

NON CIRCULATING

F C

CHECK FOR UNBOUND

LIBRARY OF THE

up

Bulletin 623

JAN 221958 UNIVERSITY OF ILLINOIS AGRICULTURE LIBRARY.

Performance of **EXPERIMENTAL** CORN **HYBRIDS** IN ILLINOIS 1957

LOCATION OF TEST FIELDS

By R. W. Jugenheimer, K. E. Williams, and A. J. Crowley, Jr.

NIVERSITY OF ILLINOIS · AGRICULTURAL EXPERIMENT STATION

CONTENTS

Page
MATERIAL TESTED
MEASURING PERFORMANCE
RESULTS OF THE TESTS
NORTHERN ILLINOIS: DeKalb
Double Crosses (Table 2)11
Three-Way, Single, and Double Crosses (Table 3)14
Single and Double Crosses (Table 4)15
Inbred Lines (Table 5)16
NORTH-CENTRAL ILLINOIS: Peoria
Double Crosses (Table 6)17
Single and Double Crosses (Table 7)20
Inbred Lines (Table 8)21
CENTRAL ILLINOIS : Urbana
Double Crosses (Tables 9 and 10)21, 25
High-Oil Double Crosses and Standards (Table 11)
Three-Way, Single, and Double Crosses (Table 12)27
Single and Double Crosses (Table 13)28
Corn-Borer-Resistant Single Crosses and Double-Cross Standards (Table 14)
Inbred Lines (Table 15)
Corn-Borer-Resistant Inbred Lines (Table 16)
SOUTH-CENTRAL ILLINOIS: Brownstown
Double Crosses (Table 17)
Single and Double Crosses (Table 18)
Inbred Lines (Table 19)35
SOUTHERN ILLINOIS: Wolf Lake Top and Double Crosses (Table 20)35
PERFORMANCE OF INBRED LINES IN SINGLE CROSSES (Table 21)36
DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES (Table 22)

Acknowledgment is due W. T. Schwenk and Sons, Edwards, Illinois, and the Shawnee High School, Union caunty, Illinois, far praviding land for twa of the tests; to W. C. Jacob and Rabert Seif for processing the data; ta H. L. Partz, D. R. Browning, and E. Arnzin for canducting the Wolf Lake tests; and ta L. H. Lindblom and H. M. Hayes for aid in field and laboratory. Tests in DeKalb, Champaign, and Fayette counties were lacated on University af Illinois farms managed by R. E. Bell, C. H. Farnham, and P. E. Johnsan.

PERFORMANCE OF EXPERIMENTAL CORN HYBRIDS IN ILLINOIS, 1957

By R. W. JUGENHEIMER, K. E. WILLIAMS, and A. J. CROWLEY, JR.³

ILLINOIS, the center of the corn belt, leads the surrounding states in corn yields per acre. During the ten years 1947-1956, Illinois farmers averaged 55 bushels per acre. These yields have resulted from the use of superior-performing hybrids and modern production practices by efficient seedsmen and farmers. The high yields have brought total production to the point where corn breeders now have the opportunity to reduce the emphasis on yield and to concentrate on developing inbred lines and hybrids that have improved standability, chemical composition, quality, machine harvestability, ear droppage, and resistance to such hazards as insects, diseases, cold, and drouth.

The development and evaluation of superior-performing hybrids is a gradual but continuing procedure. For example, Ill. 960 and Iowa 939 were widely grown in the early days of hybrid corn. These hybrid combinations were completely replaced by such hybrids as Ill. 21 and U.S. 13. These latter hybrids are now rapidly being supplanted by such hybrids as Ill. 1270, Ill. 1570, AES 702, and AES 805. In turn, some of the new experimental Illinois hybrids appear to be superior to these popular combinations.

Illinois hybrids continue to compare favorably with closed-pedigreed hybrids. This is to be expected, of course, since many hybrid seed producers have put out Illinois hybrids under different names or have modified them only slightly by substituting one or two inbred lines. Although many seedsmen use private codes on Illinois hybrids in order to conceal the pedigree of their hybrids, in 1957 some twenty hybrids were grown and certified under their original Illinois designations. Much of this certified seed was grown for sale at wholesale or in interstate commerce; a federal regulation prohibits the assignment of synonyms to corn hybrids used in interstate commerce.

This report summarizes the results of advanced tests of experimental corn hybrids conducted in 1957 by this Station. Data from many preliminary tests involving specialized phases of the corn-research program are not included in this bulletin.

¹ R. W. JUGENHEIMER, Professor of Plant Genetics; K. E. WILLIAMS, Fieldman in Agronomy; and A. J. CROWLEY, JR., Research Assistant.

Trials were made at five locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, in Fayette county in south-central Illinois, and in Union county in southern Illinois. These five locations are representative of the soil, rainfall, and length of growing season in their respective areas.

Hybrids were compared for grain yield, maturity, shelling percentage, standability, ear height and resistance to smut. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1957 performance of hybrids available to farmers in commercial quantities is reported in Bulletin 622 of this Station.

MATERIAL TESTED

Double crosses for consideration of seedsmen. Three hundred and fifty-five different double-cross hybrids were grown at the five locations. Most of the 300 selected Illinois hybrids were developed by the senior author. The seed was produced by controlled hand-pollination.

The double-cross hybrids whose performance is shown in this report and the tables in which each appears are shown in Table 22, which also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent.

Illinois yellow hybrids are numbered consecutively below 2000 and above 3000. White hybrids are numbered in the 2000 series; these white hybrids are usually followed by the letter W. Hybrids that have performed well after regional testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21; those in the 800 series correspond to Illinois 1570; and those in the 900 series to Illinois 1851.

The letter A or B following an Illinois hybrid number indicates that the combination of inbred lines making up the hybrid has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was (1×2) (3×4) , the letter A following the number means that the hybrid was put together (1×3) (2×4) , the letter B, (1×4) (2×3) . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

The University of Illinois does not produce hybrid seed corn in commercial quantities. Hybrids that include new inbred lines may be produced under the "delayed-release" program adopted by the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. If a new Illinois experimental hybrid gives satisfactory performance, the parental lines eventually are released for use by seedsmen.

In order to make the results of corn research more quickly available to the public, the University of Illinois has adopted a slight modification of the "delayed-release" policy as it pertains to Illinois-developed inbred lines. Inbred lines of corn developed by the University of Illinois may be released to the public when they have demonstrated superior combining ability for yield, standability, disease resistance, insect resistance, chemical composition, male sterility, or other characters. Such Illinois lines may form a part of a new hybrid or be used in other ways by corn breeders. Inbred lines of corn developed by others will not be released without their approval.

Hand-pollinated inbred seed of released lines will be available for a fee in packets containing 25 to 100 kernels. Releases will be announced annually on or about April 1. Inquiries may be addressed to the senior author, Agronomy Department, University of Illinois, Urbana, Illinois.

Hybrids for prediction studies. Five sets of single crosses, two sets of three-way crosses, one set of top crosses, and five sets of inbred lines differing in maturity were tested in 1957. The three-way crosses and top crosses (Tables 3, 12, and 20) are a part of the "uniform" tests conducted cooperatively by combelt states and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Single crosses and inbred lines whose performance is reported in Tables 4, 5, 7, 8, 13, 14, 15, 16, 18, 19, and 21 were developed by the Illinois Station and tested only in Illinois.

The following individuals are responsible at the present time for collecting seed of inbred lines, making the crosses, and distributing

crossed seed of the entries in the cooperative uniform tests: E. C. Rossman (Michigan), D. Linden (Minnesota), N. P. Neal (Wisconsin), and G. H. Stringfield (Ohio) — Table 3; J. H. Lonnquist (Nebraska), R. W. Jugenheimer (Illinois), and G. F. Sprague (Iowa) — Table 12; and W. R. Findley (Kansas), F. A. Loeffel (Kentucky), and M. S. Zuber (Missouri) — Table 20.

Performance of single-cross, three-way-cross, and top-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and farmers. Characteristics of single crosses such as yield, standability, and size, shape, and quality of seed definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses and three-way crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible double-cross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines: $A \times B$, $A \times C$, $A \times D$, $B \times C$, $B \times D$, and $C \times D$. The average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses $A \times C$, $A \times D$, $B \times C$, and $B \times D$ give the predicted yield of double cross (A × B) (C × D). The procedure in predicting acre yields and percentage of erect plants from single-cross data is shown on page 6 of Illinois Agricultural Experiment Station Bulletin 597.

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seedparent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses. The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is also shown on page 6 of Bulletin 597.

Top crosses are simple to produce and often are useful in early stages of a breeding program. For example, a single cross from the corn belt of the United States might contribute genes for high yield and standability, and an open-pollinated variety from Europe might contribute adaptation to local European conditions. Such top crosses might thus combine the desirable traits of the American single cross and the European open-pollinated variety. Most top crosses, however, are temporary expedients, which usually are eventually replaced by double crosses. Top crosses are useful also for evaluating the performance of inbred lines. They also provide a means of selecting promising open-pollinated varieties for use as source material for the development of inbred lines.

MEASURING PERFORMANCE

General information concerning the tests is given in Table 1.

Field plot design. Semi-balanced lattice designs were used to obtain the data reported in Tables 3, 4, 7, 12, 13, and 14. The data in Tables 5, 8, 15, 16, 19, and 20 were obtained in randomized blocks.

-	Section	Table	Plants	Date	of—
County ^a	of state	number	per hill	Planting	Har- vesting
DeKalb	Northern	2-5	4	May 7	Oct. 17
Peoria	North-Central	6-8	4	May 30	Oct. 29
Champaign	Central	9-10	4	June 5	Nov. 7
Champaign	Central	11-12	4	June 2	Nov. 4
Champaign	Central	13	4	May 8	Oct. 14
Champaign	Central	14	4	May 8	Oct. 11
Champaign	Central	15-16	4	May 8	Oct. 31
Fayette	South-Central	17	3	June 26	Nov. 16
Fayette	South-Central	18-19	3	June 26	Nov. 21
Union	Southern	20	4	May 2	Oct. 18

Table 1. — GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1957

^a The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, in Fayette county near Brownstown, and in Union county near Wolf Lake.

1958]

Rectangular and simple lattice designs were used for the data reported in Tables 2, 6, 9, 10, 11, 17, and 18. Because of time limitations, the data from the rectangular and simple lattice designs were analyzed by the procedure normally used for randomized block designs.

Method of planting. All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2×5 hills in area. Six kernels were planted in hills spaced 40 inches apart. Hills were thinned to 4 plants at DeKalb, Peoria, Champaign, and Wolf Lake, and to 3 plants at Brownstown.

Acre grain yields. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

Ear weight in field
$$\times \left[1 + \left(\frac{\text{missing hills}}{\text{hills present}} \times .7\right)\right] = \text{adjusted ear weight}$$

This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Shelling percentage and moisture in grain. All ears from one replication of each entry of the double crosses, three-way crosses, and inbred lines were shelled immediately after harvest. Two replications of the single crosses were shelled. The percentage of moisture in the shelled grain was determined with a Steinlite moisture meter.

Stand. Counts of the number of missing hills and number of missing plots were made in late summer in each plot. The data are reported as percentage of a perfect stand. Yields were corrected for missing hills.

Ear height. Representative plants in each plot were measured to determine the distance in inches from the soil to the ear-bearing node.

Erect plants. Percentage of erect plants in each plot of each entry was determined by actual counts at the time of harvest. Stalks broken above the ear were not considered lodged. Stalks leaning less than 45 degrees were considered as erect.

Smutted plants. The number of smutted plants was recorded on all plots in late summer. These data are reported in the tables as percent of smutted plants.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 21. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or three years therefore deserve the most weight when the results are studied.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure figures may be obtained that represent the range which differences between two entries must exceed before those entries can be considered significantly different. The method used to determine this range is called the "Multiple Range Test."¹ This method considers the number of entries that fall within the range as well as the variability of the test. Data shown in **boldface** were not statistically different from the best performance for that characteristic.

Double-cross hybrids that were high yielding and had excellent standability are indicated by heavy type in Table 22.

The following single crosses, three-way crosses, top crosses, and inbred lines were outstanding in performance in 1957:

Northern Illinois

- Table 3A W136A × (M14 × WF9), W20R × (M14 × WF9), R168 × (M14 × WF9), A257 × (M14 × WF9), MS111 × (M14 × WF9).
- Table 3B MS109 \times (WF9 \times Oh51A), B47 \times (WF9 \times Oh51A).

Table 4A — M14 × B14, R113 × B14, R165 × B14, L12 × Oh43, B14 × Oh43, B14 × W64A.

Table 5 — R172, W64A, Oh43, R168.

North-Central Illinois

Table 7A — Hy2 × B14, R109B × B14, R165 × B14, WF9 × B14, B14 × Oh28.

Table 8 — WF9, R168, B14, R172.

¹ "Multiple Range and Multiple F Tests," by D. B. Duncan in *Biometrics* 11 (1), 1-43. 1955.

Central Illinois

- Table 12A CI.31A × (Hy × WF9), Oh3F × (Hy × WF9), Oh4G × (Hy × WF9), Oh7N × (Hy × WF9), Oh7P × (Hy × WF9), R168 × (Hy × WF9).
- Table 12B B44 × (WF9 × 38-11), CI.31A × (WF9 × 38-11), Oh3F × (WF9 × 38-11), Oh4G × (WF9 × 38-11), R159 × (WF9 × 38-11), R168 × (WF9 × 38-11).
- Table 13A Hy2 \times R71, Hy2 \times R74, Hy2 \times R127, Hy2 \times WF9, R74 \times WF9, R129 \times WF9, R74 \times R129.
- Table 14A R71 × R109B, R74 × R109B, R74 × R112, R74 × R168, R109B × R112, R109B × R114, R112 × R115, R114 × R168, R115 × R168.

Table 15 — R71, R74, 38-11, WF9, R168.

Table 16 — R74, R71, R109B, R113, R114.

South-Central Illinois

- Table 18A C103 \times Hy2, C103 \times R154, C103 \times 38-11, Hy2 \times 38-11.
- Table 19 R166, R168, C103.

Southern Illinois

Table 20A — Mo1979 × Mo. 804, Mo9108 × Mo. 804, Ks76-55 × Mo. 804, R159 × Mo. 804, R166 × Mo. 804, CI.90A × Mo. 804, NC220 × Mo. 804.

Results of tests with high-oil hybrids are given in Table 11. Illinois High-Oil hybrids 6052, 6062, 6021, and 6016 were rather outstanding in performance.

Table 2. — DOUBLE CROSSES OF ILLINOIS 1277 MATURITY

Tested in Northern Illinois, 1955-1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
	A — Th	ree-y	ear ave	rages,	1955-	1957			
1 2 3 4 5	Ill. 1555A. AES 702. Ill. 1863. Ill. 1864. Ill. 1936.	<i>bu.</i> 115 114 113 113 113	<i>perct.</i> 21 23 23 21 23	perct. 79 77 78 78 78 77	<i>perct.</i> 88 90 93 91 92	perct. 97 98 98 98 96 98	in. 45 49 40 41 45	perct. 3 7 2 2 2	percl.
6 7 8 9 10	Ill. 1281 Ill. 1861. Ill. 1862. ISP 2. Ill. 1277.	112 111 111 111 111 110	22 21 23 24 23	79 79 79 77 79	89 83 91 87 86	99 96 99 98 99	42 43 39 44 44	2 1 2 2 2	· · · · · · ·
11 12 13 14 15 16	Ill. 1375. Ill. 1575. Ill. 1091A. Ill. 1091A. Ill. 1279. Ill. 1559B. Ill. 1380.	110 109 108 108 108 108	22 24 23 22 23 23	79 77 77 79 76 78	86 91 81 93 92 85	97 98 93 96 97 97	39 45 46 43 43 43	1 2 2 3 2	· · · · · ·
10 17 18 19 20 21	Ill. 1280. Ill. 1866. Ill. 1289. Ohio K24. Ill. 1557. Ill. 1560A.	107 107 105 105 104 104	23 23 23 21 24 23	78 75 79 77 78	85 92 95 89 95 97	97 97 98 94 95 97	43 40 40 39 42 44	1 2 2 3 3	•••
22 23 24 25 26	AES 510. Ill. 1493. Ill. 2247W. AES 610.	103 101 101 99	19 23 24 21	79 76 77 80	94 94 89 92	97 95 92 97 96 91	41 42 46 37	4 2 2 1 3	•••
27	Ill. 101 Ill. 21 Average.	97 90 107	22 24 22	78 77 78	85 82 90	84 96	42 48 43	2 2	•••
	B — T	wo-ye	ar avei	ages,	1956-1	957			
1 2 3 4 5 6	AES 702. 111. 1864. 111. 1863. 111. 1956. 111. 1960. 111. 1961.	126 125 122 122 122 122 122	22 20 22 22 20 19	76 79 78 78 78 79 78	98 97 97 95 100 99	97 98 99 98 98 98	45 42 42 46 45 46	0 0 0 0 0	0 0 2 0 0 0
7 8 9 10	Iowa 4757 ISP 2 Ill. 1281 Ill. 1575	122 122 121 120	20 23 22 23	80 78 78 78	92 87 92 94	98 98 100 98	44 45 44 45	000000000000000000000000000000000000000	1 2 0 0
11 12 13 14 15	Ill. 1861 Ill. 1862 Ill. 1936 Ill. 1936 Ill. 1952 Ill. 1957	120 120 120 120 120	20 23 22 20 20	80 78 78 78 78 78	90 99 96 97 99	96 100 98 98 98	44 40 46 44 44	0 0 0 0	3 2 0 1 2
16 17 18 19 20	Ill. 1958. Ind. 5409. Ill. 1277. Ill. 1555A. Ill. 1955.	120 120 119 119 119	19 20 23 20 20	80 79 79 80 80	96 94 94 96 99	95 98 99 96 96	46 41 44 44 44	0 0 0 0	0 1 1 0 0
21 22 23 24 25	Ill. 1280. Ill. 1289. Ill. 1559B. Ill. 1953. Ill. 1962.	118 118 118 118 118	22 22 22 20 20 20	78 76 76 78 78	87 98 98 98 98	98 98 96 98 98	46 40 43 40 46	2 0 0 0 0	0 2 0 2 1

(Table is continued on next page)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	
	B — Two-year	r avei	rages, 1	956-19	957 — 0	Conclu	ded			
26 27 28 29 30	Ill. 1963 Ill. 1091A. Iowa 4779. Ill. 1375. Ill. 1375.	bu. 118 117 117 116 116	<i>percl.</i> 20 22 24 22 23	<i>perct.</i> 78 78 79 80 76	<i>perct.</i> 98 90 98 94 98	<i>⊉erct.</i> 98 94 96 96 96	<i>in.</i> 42 46 40 40 43	<i>perct.</i> 0 0 0 0 0	<i>perct.</i> 0 1 0 0 1	
31 32 33 34 35	Ill. 1866. Mich. 52-25 Minn. CB4621. Ill. 1959. AES 510.	116 116 116 115 114	22 21 18 20 18	78 80 80 79 80 79	94 99 98 96 98	98 95 98 98 96	41 38 42 42 40	0 0 0 0	2 2 1 1 1	
36 37 38 39 40 41	Ill. 1279. Ill. 1560A. Ill. 1493. Minn. CB4603. Ill. 1902. Mich. 52 151	114 114 113 112 111	21 22 22 20 23 20	79 78 77 79 78 78	96 100 95 100 80 96	96 96 91 98 91 95	$ \begin{array}{r} 44 \\ 45 \\ 42 \\ 44 \\ 44 \\ 44 \\ 44 \end{array} $	0 1 0 0 0	2 0 2 2 2 4	
41 42 43 44 45 46	Mich. 53-151 Ill. 1954. Ohio K24. AES 610. Ill. 2247W. UL 101	111 110 110 108 108 105	20 20 20 23 21	78 80 79 80 77 78	96 94 98 96 86	95 94 96 97 95 88	44 43 40 38 46 44	0 0 0 1 1	4 2 1 0 2	
40 47	Ill. 101 Ill. 21	98	23	78	85	78	46	2	2	
	Average	117	21	78	95	96	43	0	1	
	C — 19	957 re	sults (3 repl	ication	s)				
1 2 3 4 5	Ill. 3007 Ill. 3009. Ill. 3152. Ill. 3043. Ind. 6225.	137 132 129 128 128	24 22 27 27 22	80 78 78 79 78	99 99 98 100 99	92 98 99 96 99	49 44 42 44 46	0 0 0 0	0 3 3 1 1	
6 7 8 9 10	AES 702. Ill. 1863. Ill. 1952. Ill. 3008. Ill. 3046.	127 127 126 125 125	26 26 24 27 23	75 77 76 78 76	99 99 97 97 98	95 98 98 94 93	45 41 43 46 50	0 0 0 0	0 1 1 1 1	
11 12 13 14 15	Ill. 1864. Ill. 1281. Ill. 1961. Ill. 1999. Ill. 1956.	124 123 123 123 122	23 26 22 31 27	77 77 76 76 75	99 97 99 98 91	96 99 98 98 98	40 43 47 41 47	0 0 0 0	1 0 0 1	
16 17 18 19 20	Ill. 1957 Ill. 1862 Ill. 1953 Ill. 1955 Ill. 1955 Ill. 1960	122 121 121 121 121 121	24 27 23 23 25	76 76 78 78	100 100 98 100 99	97 100 98 93 98	45 38 41 44 45	0 0 0 0	3 2 3 0 0	
21 22 23 24 25	Ill. 3045. Ill. 1277. Ill. 1575. Ill. 1936. Ill. 3048.	121 120 120 120 120	25 28 29 26 25	79 77 77 75 79	99 93 92 97 100	93 98 96 97 92	42 43 43 44 44	0 0 0 0	0 2 0 0 1	
26 27 28 29 30	Ind. 5409 ISP 2 Ill. 1091A Ill. 1963. Minn. CB4621	120 120 119 119 119	25 28 26 24 20	77 76 77 76 77	96 84 95 98 99	96 98 95 95 95	41 44 45 41 40	0 0 0 0	1 3 1 0 1	
31 32 33 34 35	Ill. 1280. Ill. 1555A. Ill. 1958. Ill. 1959. Ill. 1279.	118 118 118 118 118 117	27 23 23 25 25	76 77 78 77 77 77	87 96 98 99 99	98 93 91 98 97	42 45 47 43 45	0 0 0 0	1 1 0 2 3	
26	11 1275		26		0.4	0.4	4.4	0	0	

Table 2. — Continued

(Table is concluded on next page)

77

98

97

47

2

6 24

117

Ill. 1375..... Ill. 1962....

37

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
	C — 1957 res	ults (3 replic	cations	s) — C	oncluo	led		
38 39	Ill. 1968 Ill. 1971	bu. 117 117	<i>perct</i> . 26 27	perct. 76 77	perct. 98 95	perct. 85 88	in. 50 48	<i>perct</i> . 0 0	perct. 0 0
40 41 42 43 44 45	Ill. 1998. Ill. 3044. Iowa 4757. Ill. 1559B. Ill. 1970. Ill. 3047.	117 117 117 116 116 116	26 25 24 26 28 25	74 75 77 74 77 77 77	93 99 95 99 91 98	95 98 97 94 88 88	46 45 43 43 47 43	0 0 0 0 0	1 0 1 0 0 0
46 47 48 49 50	AES 510 Ill. 1289. Ill. 1861. Mich. 52-25. Ill. 1560A.	115 115 115 115 115 114	21 27 24 25 27	77 74 78 79 77	99 97 88 99 100	92 98 91 94 94	41 40 44 40 45	0 0 0 0	1 4 3 0
51 52 53 54 55	Iowa 4779 Minn. CB4603 Ill. 1966 Ill. 1866 Ill. 3006	114 114 113 111 111	28 23 28 26 24	77 77 73 76 77	97 100 94 94 98	94 95 92 97 95	40 43 49 39 41	0 0 0 0 0	1 4 1 2 2
56 57 58 59 60	Ill. 1557. Ill. 3016. Ill. 3057. Ill. 3005. Mich. 53-151.	110 110 108 107 107	27 30 27 25 24	74 74 77 74 77	99 95 97 97 95	92 93 97 93 91	43 44 45 42 43	0 0 0 0	2 2 0 2 6
61 62 63 64 65	Ill. 1493. Ohio K24. AES 610. Ill. 1954. Mich. 54-70.	106 106 105 105 105	26 24 24 23 26	74 76 78 78 78	94 96 99 97 99	83 92 96 89 88	42 38 38 43 39	0 0 0 0 0	4 4 1 3 1
66 67 68 69 70	Ill. 1969. Mich. 54-116. Ill. 1902. Ill. 2247W. Ill. 101.	104 103 101 98 91	30 24 27 28 25	77 79 76 74 76	100 98 73 100 86	82 99 83 92 79	46 39 44 45 44	0 0 0 0	0 5 3 1 4
71 72	Ohio M15 Ill. 21	85 77	24 28	76 76	95 94	76 58	46 47	0 0	1 2
	Average	116	25	77	96	93	44	0	1

Table 2. — Concluded

BULLETIN No. 623

[January,

Table 3. — THREE-WAY, SINGLE, AND DOUBLE CROSSES OF ILLINOIS 1277 MATURITY

Tested in Northern Illinois, 1957

Code	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
	A — Inbred line	es cro	ssed wit	th (M1	$4 \times W$	F9)		
2 W13 3 W20 4 W20	6D 66A 02 BR	bu. 102 107 107 108 86	perct. 23 27 26 25 31	perct. 76 77 74 74 72	perct. 99 97 98 97 94	perct. 95 94 89 90 81	in. 34 36 36 38 35	<i>perct</i> 0 1 8 0 2
7 R17 8 A25 9 A29 10 A56	8 2	107 100 109 82 104 93	26 29 26 22 24 25	77 72 73 79 78 75	97 97 100 96 98 91	84 90 98 82 89 89	38 37 35 33 36 35	2 1 0 2 1 0
12 MS1 13 MS1 14 MS1 15 MS1 16 MS1	109. 111. 121. 125. 126.	106 119 84 99 104	28 26 29 25 27	75 78 69 73 76	98 98 92 98 99	94 92 79 88 84	38 34 33 36 37	1 2 8 3 1
19 B47	a (Minn.Syn.1) a (Minn.Syn.2) Average	105 110 97 102	29 24 29 26	72 77 74 75	73 85 97 95	87 88 84 88	38 40 36 36	1 3 0 2
	B — Inbred lines	cross	ed with	(WF9	$0 \times Ohs$	51A)		
22 W13 23 W20 24 W20	6D 6A 12 DR	79 97 105 102 95	24 22 25 29 29	70 79 77 73 73	96 92 99 96 95	89 91 83 90 85	36 35 38 37 34	1 6 4 0
27 R17 28 A25 29 A29	8 2	100 88 99 105 100	24 29 27 22 24	77 75 74 83 77	99 98 99 93 97	83 86 89 89 92	39 40 35 37 36	2 2 1 4 1
32 MS1 33 MS1 34 MS1	9	103 113 87 91 86	23 28 29 27 27	76 77 76 70 75	97 99 98 96 97	87 97 83 88 85	36 37 35 33 36	1 1 3 1 1
37 Iowa 38 Iowa 39 B47	(Minn.Syn.1) a (Minx.Syn.1) a (Minx.Syn.2) Average	96 98 107 110 91 98	29 30 26 24 31 26	77 69 74 78 74 75	96 94 92 95 100 96	80 89 92 91 90 88	38 39 38 39 35 35	1 2 3 6 2
			gle cros					
41 M14 42 WF9	XWF9. XOh51A Average.	99 92 96	26 26 26	73 77 75	99 98 98	88 76 82	33 36 34	0 2 1
	D -	– Dou	ble cros	sses				
43 111. 1 44 111. 1 45 111. 1 49 AES 48 111. 3	\$159. 1277. 1559B. 1969. 610. 3059.	120 120 112 107 104 99	27 28 30 29 27 29	76 77 75 74 73 71	98 93 98 97 99 99	95 93 93 87 97 92	39 42 35 41 37 43	2 2 2 2 2 2 1
47 Ill. 3	3058 3057 Average	96 95 107	28 28 28	67 67 72	100 95 97	93 94 93	42 39 40	0 2 2

Table 4. — SINGLE AND DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1957

Cod	e Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
	А	— Sin	gle cros	sses				
1 2 2	M14×R113 M14×R165	bu. 108 91	<i>percl.</i> 28 29 24	<i>perct.</i> 78 80 77	<i>percl.</i> 98 56 93	<i>perct.</i> 94 81 94	in. 33 38	perct. 0 0
3 4 5	M14×R168. M14×R172. M14×WF9.	114 114 106	24 25 27	77 76	93 100 97	96 90	37 39 34	0 0 0
6 7 8 9 12	$\begin{array}{c} M14 \times L12 \\ M14 \times B14 \\ M14 \times 0h43 \\ M14 \times W64A \\ R113 \times R165 \\ \end{array}$	107 130 112 101 110	25 24 26 26 29	77 80 77 77 74	99 99 100 100 77	98 91 95 95 91	44 34 29 33 42	0 0 7 0
13 14 15 16 17	$\begin{array}{c} R113 \times R168. \\ R113 \times R172 \\ R113 \times WF9. \\ R113 \times L12 \\ R113 \times L12. \\ R113 \times B14. \end{array}$	104 100 104 108 119	25 28 26 29 24	74 64 73 74 76	99 100 100 100 100	93 99 81 93 92	42 43 39 48 45	1 0 1 1
18 19 23 24 25	$\begin{array}{c} R113 \times Oh43. \\ R113 \times W64A. \\ R165 \times R168. \\ R165 \times R172. \\ R165 \times WF9. \end{array}$	118 98 101 107 121	32 26 26 30 28	74 71 75 75 78	99 99 88 94 88	96 95 85 97 93	38 38 43 44 40	0 1 0 1 0
26 27 28 29 34	$\begin{array}{c} R165 \times L12. \\ R165 \times B14. \\ R165 \times Oh43 \\ R165 \times Oh43. \\ R165 \times W64A \\ R168 \times R172. \end{array}$	88 119 116 103 73	36 26 34 30 27	69 77 78 75 72	30 92 96 74 98	98 94 93 93 99	50 40 36 36 40	3 0 1 0
35 36 37 38 39	$\begin{array}{c} R168 \times WF9. \\ R168 \times L12. \\ R168 \times B14. \\ R168 \times Oh43. \\ R168 \times W64A. \\ \end{array}$	108 113 105 104 98	24 29 24 28 23	78 77 78 75 72	99 98 99 98 99	84 97 90 98 95	41 50 44 39 38	1 0 0 2
45 46 47 48 49	$\begin{array}{c} R172 \times WF9. \\ R172 \times L12. \\ R172 \times B14. \\ R172 \times Oh43. \\ R172 \times W64A. \end{array}$	112 99 117 111 106	29 30 28 34 27	76 70 77 77 79	99 100 100 100 100	92 93 99 93 94	40 45 45 38 38	1 0 0 0
56 57 58 59 67	$\begin{array}{l} WF9 \times L12. \\ WF9 \times B14. \\ WF9 \times Oh43. \\ WF9 \times W64A. \\ L12 \times B14. \end{array}$	89 113 110 65 108	34 25 32 30 30	69 78 77 68 79	97 100 100 91 99	92 83 92 92 85	47 42 35 31 54	1 0 1 2 0
68 69 78 79 89	$\begin{array}{c} L12 \times Oh43 \\ L12 \times W64A \\ B14 \times Oh43 \\ B14 \times W64A \\ Oh43 \times W64A \\ \end{array}$	120 112 134 123 117	35 29 31 22 26	78 75 77 79 77	100 94 100 100 100	97 96 97 97 95	45 44 37 39 30	0 3 0 1 1
	Average	107	28	75	94	93	40	1
	B·	- Dou	ible cro	sses				
91 93 90 92	Ill. 1277. Ill. 1863. AES 610. Ill. 1555A.	121 113 108 107	28 33 26 23	78 76 74 79	96 99 98 94	95 94 97 84	41 35 34 42	1 1 3 1
	Average	112	28	77	97	92	38	2

Table 5.— INBRED LINES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
		bu.	perct.	perct.	perct.	perct.	in.	perct.
1	R165	48	36	66	55	94	31	1
2	R172	47	29	78	100	93	33	ō
3	W64A	44	23	67	96	86	23	1
4	Oh43	41	27	78	100	68	24	0
5	WF9	38	34	64	89	84	29	2
6	R168	35	21	62	98	93	36	3
7	M14	33	25	74	94	75	24	1
8	R113	27	25	49	100	77	27	2
9	B14	24	34	48	99	91	34	0
10	L12	20	40	56	97	66	36	1
	Average	36	29	64	93	83	30	1

•

Table 6. — DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1955-1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
		A — Three-y	ear ave	erages,	, 1955-	1957			

	111 074 4	bu.	perct.	perct.	perct.	perct.	in.	percl.	perci.
1	Ill. 274-1 Ill. 972A-1	$105 \\ 105$	20 21	81 79	84 85	96 97	$\begin{array}{c} 44 \\ 44 \end{array}$	0	
3	AES 806	103	23	79	87	95	39	4	
4	Ill. 1332	103	20	81	86	98	43	2	• •
5	Ill. 1912	103	21	80	82	94	43	3	••
6 7	Ill. 1280	102 101	19 21	81 80	85 84	96 95	40 43	4 2	••
8	Ill. 1919 AES 805	100	21	78	88	95	43	2	•••
9	Ill. 1760	100	22	79	83	96	39	3	
10	Ill. 1916	100	20	80	82	93	44	3	••
11	III. 1511	99	21	80	86	96	44	2	
12 13	Ill. 1570	99 99	21 22	78 78	82 89	96 91	$\frac{44}{45}$	2 6	• •
13	Ill. 1875 Ill. 1575	99	22	80	85	91 97	45 38	5	
15	Ill. 1831	98	22	80	90	95	37	ĭ	
16	Ill. 1913	98	20	81	82	93	43	5	
17	Ill. 1917	98	21	80	76	91	44	2	
18 19	Ill. 1868	95 94	22 19	79 80	95 84	93 89	39 39	2 1	• •
20	Ill. 1819 Ill. 1863	04	20	81	95	94	34	1	
21	AES 702	93	20	79	88	91	41	2	
22	Ill. 1277	93	20	82	87	9 5	39	ĩ	
23	Ill. 21	92	21	81	86	95	41	1	
24 25	Ill. 1555A Iowa 4297	92 92	17 20	80 79	89 87	95 98	38 39	2	• •
								-	• •
26 27	Ill. 1560A Ill. 1814	91 90	18 22	82 79	91 94	96 91	38 37	1	• •
28	Ill. 1873	90	20	78	92	94	37	2	
29	Ill. 2247W	86	21	77	86	95	40	3	
	Average	97	21	80	87	94	41	2	••
	B — Tv	vo-yea	ar aver	ages,	1956-1	957			
1	AES 805	125	20	81	84	96	46	1	2
23	Ill. 972A-1	125 124	18 18	81 84	82 83	97 99	49 46	1	2 2
3	Ill. 1971	124	18	82	83	99	40	0	4

2	Ill. 972A-1	125	18	81	82	97	49	ī	2
3	Ill. 1971	124	18	84	83	99	46	0	2
4	Ill. 274-1	122	18	82	78	95	48	0	1
5	Ill. 1912	122	20	81	75	93	48	4	4
6	Ill. 1970	122	18	84	79	98	46	0	0
7	AES 806	120	21	80	85	93	43	4	ī
8	Ill. 1280	119	17	82	78	96	45	6	3
9	Ill. 1332	119	18	82	84	98	48	2	1
10	Ill. 1511	119	18	82	80	96	49	3	0
11	Ill. 1575	119	18	82	82	97	42	6	2
12	Ill. 1760	119	19	81	76	95	44	3	7
13	Ill. 1570	118	19	80	76	96	48	3	3
14	Ill. 1919	118	20	81	78	93	48	2	4
15	Ill. 1921	118	21	80	93	92	46	1	1
16	Ill. 1928	118	22	80	88	94	50	2	4
17	Ill. 1968	118	18	82	83	92	48	0	1
18	Ill. 1972	118	18	83	82	97	46	0	3
19	Ill. 1973	118	19	82	76	97	46	1	2
20	Nebr. 1924	117	18	82	90	97	45	2	2
21	Ill. 1831	116	20	82	88	94	41	1	3
22	Ill. 1875	116	20	80	86	90	50	8	2
23	Ill. 1966	116	19	82	86	92	44	0	1
24	Ill. 1969	116	18	82	94	94	45	0	2
25	Ill. 1277	114	18	84	84	95	42	0	2

(Table is continued on next page)

BULLETIN NO. 623

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
	B — Two-year	avei	ages, 1	1956-19	957 0	Conclu	ded		
26	Ill. 1916	bu. 114	perct. 18	perct. 81	perct. 75	perct. 92	in. 50	perci. 4	perct. 3
27	Iowa 4809	114	18	80	95	94	43	1	1
28	Ill. 1913	113	18	82	75	92	48	6	0
29	Ill. 1922	113	22	80	88	92	46	1	0
30	Ill. 1819	112	18	82	78	86	44	0	1
31	Ill. 1868	112	20	81	94	94	42		1
32	Ill. 1926.	112	19	80	82	94	46	5	0
33	Ill. 1930.	112	24	80	88	88	48	2	2
34	AES 702.	111	18	80	84	88	44	0	0
35 36	Ill. 21 Ill. 1917	111 111	18 20	83 81	81 68	93 92	45 50	0	2 4 2
37	Iowa 4297.	110	18	82	84	99	44	0	1
38	Iowa 4879.	110	18	80	96	90	42	2	2
39	Ill. 1863.	109	18	82	94	94	38	1	2
40	Ill. 1560A	108	17	84	88	96	42	1	2
41	Ill. 1967	108	18	80	92	93	48	2	4
42	Ill. 1873	107	18	80	90	92	42	2	0
43	III. 1927.	107	20	78	89	90	45	3	0
44	III. 1902.	106	17	82	71	92	44	0	3
45	III. 1555A.	104	15	80	86	92	42	2	2
46 47	Ill. 1814	$\begin{array}{c} 104 \\ 104 \end{array}$	20 18	82 81	92 91	90 91	40 42	1 1	1
48 49	Ill. 1936 Ill. 2247W. CB 4726A.	98 92 114	19 18 19	78 82 81	83 92 84	94 94 94	44 38 45	2 1 2	1 2 2
	Average		sults (45	2	
1	Ill. 3026	127	23	79	85	96	36	0	0
2	Ill. 3027.	127	22	80	74	98	40	0	0
3	Ill. 3040.	127	20	79	59	97	46	0	1
4	Ill. 3042.	127	23	77	92	87	44	0	0
5	Ill. 3033.	126	19	79	74	98	38	0	3
6 7	Ill. 3023A Ill. 3035	125 125	20 22	81 82	87 85	96 94	35 38	0 0	2 0 2 0
8	Ill. 3037.	125	21	80	72	92	43	0	2
9	Ill. 1970.	123	21	83	63	98	43	0	0
10	Ill. 3010.	123	22	78	82	98	44	0	2
11	Iowa 4880	122	21	79	90	91	39	0	1
12	AES 805	121	23	78	79	93	43	0	2
13	Ill. 1332	121	21	79	76	99	43	0	1
14	Ill. 1971.	121	22	82	71	98	43	0	1
15	Ill. 3032.	121	20	78	89	95	39	0	2
16	Ill. 274-1	120	21	80	67	91	47	0	0
17	Ill. 972A-1.	120	23	78	72	95	47	0	0
18	Ill. 3019	120	21	80	88	95	42	0	1
19	Ill. 3014	119	24	78	76	94	46	0	1 5
20	Ill. 3022	119	21	81	83	87	40	0	
21	Ill. 3039.	118	23	78	88	92	42	0	2
22	Ill. 1280.	117	20	80	71	97	39	0	1
23	Ill. 1928.	117	26	76	86	89	50	0	1
24 25	Ill. 3020 Ill. 3029	117 117	21 21	79 77 70	87 88	99 88	38 38	0	0
26 27 28 29 30	III. 1511. III. 3021. III. 21. III. 3012. III. 3017.	116 116 115 115 115	21 24 23 23 23	79 78 80 79 79	74 93 79 75 91	93 93 88 91 95	45 40 44 42 39	0 0 0 0	0 0 1 3 3
31	Ill. 3160	115	22	80	92	94	40	0	1
32	Ill. 1575	114	20	80	71	94	38	0	
33	Ill. 1760.	$114 \\ 114 \\ 114$	22	79	69	92	39	0	4
34	Ill. 1973.		23	79	64	95	45	0	3
35	Ill. 3043.		20	81	92	93	41	0	0
36	Ill. 3030	113	24	78	95	96	39	0	0
37	Ill. 3034	113	22	80	82	91	36	0	1

Table 6. — Continued

(Table is concluded on next page)

Table 6. — Concluded

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
	C — 1957 resu	1lts (3	replic	ations	s) — C	onclud	led		
38 39 40	Ill. 3169C Ill. 1570 Ill. 3013	bu. 113 112 112	<i>perct.</i> 22 23 25	perct. 74 77 77	perct. 78 67 68	perct. 93 93 95	in. 36 46 46	<i>perct.</i> 0 0 0	<i>perct.</i> 3 4 0
41 42 43 44 45	Ill. 3036 Nebr. 1924. AES 806 Ill. 1912. Ill. 1966.	112 112 111 111 111	21 21 24 25 22	80 80 78 78 80	82 83 76 67 77	92 94 87 89 87	34 44 38 46 40	0 0 0 0	1 2 1 2 1
46 47 48 49 50	Ill. 1968 Ill. 1972 Ill. 3018 Ill. 3025 Ill. 3038	111 111 111 111 111 111	20 22 22 24 20	80 81 80 80 80	76 74 90 89 91	88 96 94 95 89	45 43 40 40 38	0 0 0 0	1 3 3 0 1
51 52 53 54 55	Ill. 3041 Iowa 4809 Ill. 1969 Ill. 3045 Ill. 3047	111 111 110 110 110	19 22 22 20 20	81 78 79 81 78	72 95 93 96 85	93 92 91 89 93	38 41 43 40 41	0 0 0 0	3 1 3 0 0
56 57 58 59 60	Ill. 3015A. Ill. 3016 Ill. 3024 CB 4726A Ill. 1831	109 109 109 109 108	22 22 22 21 23	76 79 77 80 79	86 95 96 87 80	100 94 94 94 89	41 37 40 35 37	0 0 0 0	0 2 3 0 2
61 62 63 64 65	Ill. 1921. Ill. 1916. Ill. 1926. Ill. 1927. Ill. 1930.	108 107 107 106 106	26 23 24 22 30	77 78 77 81 78	92 71 73 80 86	84 86 93 92 82	45 47 43 40 46	0 0 0 0 0	1 2 0 1 1
66 67 68 69 70	Ill. 3011. Ill. 3044. AES 702. Ill. 1560A. Ill. 1868.	106 106 104 104 104	24 22 21 20 24	78 78 77 83 78	91 89 71 81 93	98 96 83 94 88	41 40 40 39 40	0 0 0 0 0	0 0 2 0
71 72 73 74 75	Ill. 1875. Iowa 4879. Ill. 1913. Ill. 1967. Ill. 1863.	104 104 103 103 102	24 22 21 23 21	76 78 79 77 80	81 96 65 88 94	81 82 86 89 90	49 38 45 46 32	0 0 0 0	0 1 0 4 3
76 77 78 79 80	Ill. 1922. Ill. 3124. Ill. 1919. Ill. 3048. Ill. 1902.	102 102 101 101 100	27 21 24 20 20	76 79 78 80 79	84 91 66 92 65	87 88 91 80 87	43 42 46 43 41	0 0 0 0	0 1 5 0 3
81 82 83 84 85	Ill. 1917. Iowa 4297. Ill. 1927. Ill. 1819. Ill. 1819.	100 98 93 92 91	24 22 24 22 23	77 80 76 78 77	59 75 84 62 82	86 98 81 72 86	49 41 43 41 39	0 0 0 0	1 3 0 0 0
86 87 88 89 90	Ill. 3046 Ill. 1814 Ill. 1936 Ill. 1555A. Ill. 2247W.	91 90 90 88 83	20 24 22 18 23	75 78 78 73 72	92 87 89 75 80	83 81 82 86 89	41 36 37 39 39	0 0 0 0	0 1 0 1 0
	Average	111	22	79	81	91	41	0	1

BULLETIN NO. 623

[January,

Table 7. — SINGLE AND DOUBLE CROSSES OF ILLINOIS 21 MATURITY

Tested in North-Central Illinois, 1957

Cod	le Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
_	A	— Sin	gle cros	ses				
1 2 3 4 5	$Hy2 \times R109B$. $Hy2 \times R113$. $Hy2 \times R165$. $Hy2 \times R166$. $Hy2 \times R168$.	<i>bu</i> . 109 110 120 93 106	<i>perct.</i> 25 21 21 21 21 19	<i>perct.</i> 78 79 82 79 81	perct. 67 65 79 66 96	<i>perct.</i> 100 89 90 87 91	in. 47 47 42 39 42	<i>perct.</i> 1 0 0 0 0
6 7 8 9 12 13	$\begin{array}{c} Hy2 \times R172. \\ Hy2 \times WF9 \\ Hy2 \times WF9 \\ Hy2 \times B14. \\ Hy2 \times Oh28 \\ R109B \times R113. \\ P100B \times P145 \end{array}$	88 114 118 112 101 108	21 22 22 19 22 24	80 81 82 81 78 79	88 85 87 67 82	77 90 87 86 89	40 40 43 41 37	0 0 1 0 0
14 15 16 17	R109B × R165 R109B × R166 R109B × R168 R109B × R172. R109B × WF9	98 99 90 1 0 9	24 22 23 23	80 82 75 77	78 92 96 81 96	85 94 89 95 84	36 34 39 38 34	1 1 1 0
18 19 23 24 25	R109B×B14. R109B×Oh28. R113×R165. R113×R166. R113×R168.	130 91 106 79 94	22 21 20 21 20	80 80 75 78 78	92 87 46 47 86	94 87 92 85 85	41 33 37 36 39	0 1 0 1 0
26 27 28 29 34	R113×R172. R113×WF9 R113×B14. R113×Oh28. R165×R166.	92 93 115 79 98	18 19 19 20 22	75 79 81 78 83	86 83 93 89 42	93 78 93 79 93	38 32 40 31 32	0 0 1 0 0
35 36 37 38 39	$\begin{array}{c} R165 \times R168 \\ R165 \times R172 \\ R165 \times WF9 \\ R165 \times B14 \\ R165 \times Oh28 \\ \end{array}$	107 86 116 117 97	21 20 20 21 22	80 78 81 81 80	87 90 72 85 65	93 79 93 90 79	38 37 34 38 33	1 0 1 1
45 46 47 48 49	$\begin{array}{c} R166 \times R168 \\ R166 \times R172 \\ R166 \times WF9 \\ R166 \times B14 \\ R166 \times Oh28 \\ \end{array}$	82 82 99 114 82	20 20 20 19 20	72 81 83 82 82	78 63 64 81 42	90 88 89 100 80	34 36 32 38 32	2 1 1 0 3
56 57 58 59 67	R168×R172. R168×WF9. R168×B14. R168×Oh28. R172×WF9.	59 108 111 94 109	22 21 18 18 21	77 80 82 83 80	88 96 95 88 95	84 94 88 84 88	34 37 40 35 36	0 0 1 1 0
68 69 78 79 89	R172×B14. R172×Oh28. WF9×B14. WF9×Oh28. B14×Oh28. Average	97 86 118 104 120 101	18 18 20 19 21 21	80 75 79 80 80 79	97 77 98 85 92 80	84 88 87 82	39 38 37 34 35	0 3 0 1 1
	AverageB-		ible cros		00	88	37	1
90 92 93 91	AES 702 Ill. 1575 Ill. 1936 Ill. 21 Average	117 108 103 97 106	22 20 21 22 21	85 79 75 78 79	87 85 86 70 82	84 85 88 87 86	39 38 34 41 38	0 1 1 1 1

Table 8. — INBRED LINES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1957

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
		bu.	perct.	perct.	perct.	perct.	in.	perct.
1	WF9	49	19	73	85	87	24	7
2	R168	43	20	76	93	79	30	6
3	Oh28	41	17	69	67	79	29	10
4	B14	40	21	68	100	84	28	0
5	R172	38	24	75	92	84	28	0
6	R165	38	25	58	40	86	29	1
7	R113	35	18	67	95	80	26	Ō
8	R109B	31	28	69	78	76	31	0
9	Hy2	31	19	68	100	70	30	0
10	R166	17	25	53	78	86	26	41
	Average	36	22	68	83	81	28	6

Table 9. — DOUBLE CROSSES OF ILLINOIS 1570 MATURITY Tested in Central Illinois (Field A), 1955-1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Ran in yiele	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	Half- silk
	A -	-Th	ree-yea	r avei	rages,	1955-1	957			
		bu.	perct.	perct.	perct.	perct.	in.	perct.	perct.	days
$\frac{1}{2}$	Ill. 1909	117 116	18	85	65	98 97	49 47	6	• •	
3	Ill. 1913 Ill. 1919	116	17 18	85 82	64 66	96	47	3 1		
4	AES 806	114	21	82	70	98	44	5		
5	Ill. 1916	114	18	84	70	98	48	4	• •	• •
6 7	Ill. 274-1 Ill. 972A-1	113 113	18 18	84 82	71 78	93 99	49 48	2 5	• •	• •
8	Ill. 1332	113	18	83	76	95	46	6		
9 10	Ill. 1421 Ill. 1511	113 112	18 19	82 83	69 72	95 98	47 49	2 8	• •	• •
11	Ill. 1813	112	19	82	72	98 97	49	8	•••	• •
12	Ill. 1880	112	17	83	79	97	40	° 4	•••	
13	Ill. 1889	112	18	80	77	99	46	3		
14 15	Ill. 1890 Ill. 1918	112 112	17 18	84 83	79 68	96 97	44 47	7 4		••
16	AES 805	111	18	83	80	97	47	5		
17	Ill. 1912	109	19	84	59	95	47	4		
18 19	U.S. 13 Ill. 1570	106 105	18 19	82 82	67 64	94 00	52 49	9 7	•••	• •
20	AES 808	104	17	84	69	97	43	3		
21	Ill. 1767	104	18	80	74	95	45	5		
22 23	Ill. 1777 Ill. 21	103 99	18 17	82 83	69 69	97 96	45 44	3 4	••	• •
23	Average	111	18	83	71	97	47	5	•••	• •
	В	-Tv	vo-year	avera	ages, 1	956-19	57			
1 2	Ind. 5655 Ill. 1975	131 128	18 21	84 80	92 72	98 97	44 56	1	3 3	67 70
3	Ill. 1973	128	18	85	82	97	48	1	2	65
4	Ill. 1890	126	18	84	89	98	43	3	1	65
5	Ill. 1893	126	18	80	90	93	50	2	4	70
6 7	Ill. 1909 AES 805	126 124	18 19	84 82	80 90	99 96	48 46	4 2	2 2	65 66
8	AES 806	124	22	82	89	98	44	2	4	66
9 10	Ill. 1332 Ill. 1511	124 124	18 20	82 82	87 88	96 98	46 49	4 5	0 4	66 66
11	Ill. 1656	124	18	83	84	100	48	2	2	66
12	Ill. 1916	124	18	84	88	99	48	2	7	66
13	Ill. 1919	124	18	82	81	96	46	0	3	66

(Table is continued on next page)

Table 9. — Con	tinu	led
----------------	------	-----

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	Half- silk
	B — Two	-year		ges, 19	956-195	7 — C	onclud	led		
		bu.	perct.	perci.	perct.	perct.	in.	perct.	perct.	days
14 15	Ill. 1928 Ill. 1889	124 123	20 18	82 80	89 87	96 100	50 45	2 1	4 6	66 66
16 17	Ill. 1421	122	19 20	80 82	82 96	96 96	48 44	0 4	1	66 66
18 19	Ill. 1813 Ill. 1918	122 122 122	18	82 82	87 90	98 98	46	2 4	î 0	65 66
20	Ill. 1921. Ill. 972A-1	121	18	82	92	100	47	2	2	66
21 22	Ill. 1927. Ill. 274-1	121 120	21 18	80 83	90 92	98 94	46 48	2 2	1	66 66
23 24 25	Ill. 1880 Ill. 1973 Mo. 4060AW	120 120 120	17 19 20	83 84 79	87 90 93	98 100 98	45 46 46	2 0 2	1 2 1	66 66 6 5
26	AES 702	119	20	80	86	100	46	3	2	65
27 28	Ill. 1912 Iowa 4912	119 119	20 18	83 81	71 84	95 98	47 48	4 2	3 2	66 66
29 30	Ill. 1922. Ill. 1974	118 118	20 18	79 84	94 84	98 98	44 47	3 0	1 2	66 66
31 32	Ill. 1972 Ill. 1926	117 116	20 18	83 80	81 92	98 9 5	44 46	0 4	2 2	66 6 5
33 34	Ill. 1570	116 115	20 19	82 81	96 72	94 99	42 49	2 2	23	66 66
35 36	U.S. 13 AES 808	115 114	18 18	82 84	82 8 4	94 98	50 42	4	2 2	66 67
37 38	Ill. 1902 Ill. 1777	114 112	16 18	83 82	78 84	98 97	44	2 2 0	22	66 66
39 40	Ill. 1767 Ind. 4656	110 110	19 20	80 82	89 88	93 96	45 41	2	3 2	66 66
41 42	Ill. 21	108 106	18 18	82 80	85 94	96 96	40 45	0 2	0 6	6 5 66
42	Ill. 1935 Average	120	19	82	86	90 97	45	2	2	66
		- 19	57 resu	ilts (3	replic	ations	5)			
1	Ill. 1332-3	119	24	78	84	99	49	0	1	61
23	Ill. 3092 Ind. 5655	118 118 118	22 20	78 79	90 87 80	99 98	49 46	0	1 2	60 62
4 5	A 102 Ill. 1852	116	27 24	78 76	70	98 99	45 50	0 0	1 0	62 66
6 7	Ill. 1859 Ill. 1928	116 116	22 24	78 80	64 86	98 96	51 52	0 0	0 1	65 61
8	Ill. 1656	116 115	24 21	76 80	70 80	99 100	52 47	0	1 2	62 62
10 11	Ill. 1915	115 115	20 25	82 88	73 69	96 95	49 47	0	2 1	60 62
12 13	Ill. 3052	115 115	20 19	80 81	76 70	100 99	44 49	0	1 0	59 60
14 15	AES 805 Ill. 1656-2	114 114	22 21	78 79	89 74	95 94	47 46	0 0	1 2	60 63
16 17	Ill. 1890	114 114	20 25	83 76	84 55	9 7 96	43 51	0 0	0 1	60 65
18 19	Ill. 1985	114 114	22 21	77 80	84 67	98 99	49 48	0	2 1	63 62
20 21	Ill. 1991 Ill. 3049	114 114	24 21	81 81	80 96	92 94	45 47	0 0	2 0	63 60
22 23	Ill. 3091 Ill. 1921	114 113	25 22	78 78	65 87	99 98	47 45	0	10	63 62
24 25	Ill. 1976 Ill. 1978	113 113	24 25	76 74	74 78	91 98	50 46	Ŏ O	1 0	66 65
26 27	Ill. 3093. Ill. 3095.	113 113	22 21	78 78	90 77	99 96	47 46	0	0	60 60
28 29	Ill. 3104. AES 702.	113 113 112	20 23	79 77	78 83	96 96 99	40 44 46	0	1	61 60
30	111. 1030-1	112 112	21 20	78 81	83	97 99	46	0	1	61
31 32 33	Ill. 1880 Ill. 1902 Ind 6833	112 112 112	20 20 21	81 81 78	81 69	98	44 45	0	1 0 0	61 60
33 34 35	Ind. 6833 Ill. 1421 Ill. 1909	111 111 111	21 23 21	78 76 81	80 71 73	98 95 98	49 50 47	0 0 0	0 0 2	63 60 60
36	Ill. 3107	111	22	79	82	99	45	0	1	61
37	Ill. 3115	111	19	79	78	97	47	0	3	61

(Table is continued on next page)

					///////					
Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	Half- silk
	C 1957	resu	lts (3	replic	ations)) — Co	ontinu	ed		
38 39 40 41	Ill. 3124 AES 806 Ill. 21-2 Ill. 1332 Ill. 1046	<i>bu</i> . 111 110 110 110	percl. 24 27 21 22	perct. 78 78 80 78	perct. 94 84 80 85	perct. 99 97 90 94	in. 45 44 49 44	<i>perct.</i> 0 0 0	<i>perct.</i> 2 1 1 0	days 60 61 61 61
42 43 44 45	Ill. 1946. Ill. 3077. Ill. 3083. Ill. 3101.	110 110 110 110	26 20 23 19	80 76 80 80	85 63 92 68	99 98 100 95	52 45 44 46	0 0 0 0	1 3 2 1	61 62 60 61
46 47 48 49 50	Mo. 4060AW A 101. Ill, 21-4. Ill, 1643. Ill, 1918.	110 110 109 109 109	24 26 21 22 22	75 80 79 79 79	90 80 74 71 82	99 97 89 99 100	47 46 43 50 47	0 0 0 0 0	0 3 3 0 1	60 62 60 66 60
51 52 53 54 55	Ill. 1974. Ill. 1983. Ill. 1997. Ill. 3062. Ill. 3065.	109 109 109 109 109	22 22 25 20 20	81 83 79 82 84	74 88 83 77 76	97 100 97 98 98	49 46 48 46	0 0 0 0	0 2 0 0 1	61 61 63 62 61
56 57 58 59 60	III. 3112. III. 972A-1 III. 132-4. III. 1337-1 III. 1851.	109 108 108 108 108	22 22 23 22 24	77 79 78 78 75	87 92 79 69 92	92 99 99 97 96	47 49 46 46 49		2 0 2 0 1	61 62 60 60 66
61 62 63 64 65	III. 1856. III. 1857. III. 1927. III. 1942. III. 1945.	108 108 108 108 108	34 29 27 24 27	77 74 77 76 79	73 68 83 81 78	97 98 98 97 99	54 55 46 50 54	0 0 0 0	1 2 1 5 1	67 67 61 62 63
66 67 68 69 70	Ill. 1973. Ill. 1980. Ill. 3117. Ill. 1332-2. Ill. 1570-1.	108 108 108 107 107	23 20 22 21 23	82 78 83 78 77	88 90 78 76 75	100 96 98 96 100	47 49 43 47 45	0 0 0 0	0 0 3 0 1	61 61 60 60
71 72 73 74 75	III. 1813 III. 1849 III. 1916 III. 1984 III. 3055	107 107 107 107 107	22 27 23 25 21	78 75 80 77 81	95 88 82 76 84	98 95 98 96 98	45 48 48 46 43	0 0 0 0	0 1 8 0 0	60 66 61 61 60
76 77 78 79 80	Ill. 3094. Ill. 3114. Iowa 4912. Ill. 1944. Ill. 1988.	107 107 107 106 106	25 23 22 23 22	77 77 78 74 78	84 67 76 94 77	97 99 100 97 95	49 49 50 44	0 0 0 0	4 1 3 0	61 60 61 61 61
81 82 83 84 85	Ill. 1996. Ill. 3076. Ill. 3116. Ill. 3118. Ill. 118. Ill. 1511.	106 106 106 106 105	24 22 20 23 24	77 78 80 77 77	86 82 83 85 83	97 98 100 99 98	47 46 45 48 49	0 0 0 0	0 0 2 0 2	61 61 62 60
86 87 88 89 90	Ill. 1570-2. Ill. 1889. Ill. 1893. Ill. 1919. Ill. 1919. Ill. 1922.	105 105 105 105 105	24 20 22 22 24	77 76 78 78 75	71 82 85 74 92	99 100 90 100 97	48 45 51 45 45	0 0 0 0	0 6 1 2 1	62 61 65 61 61
91 92 93 94 95	Ill. 3084. AES 808. Ill. 1570A Ill. 1926. Ill. 1986.	105 104 104 104 104	22 21 22 20 22	75 80 76 77 78	82 76 73 91 79	97 99 100 94 94	47 45 45 47 44	0 0 0 0	0 2 0 1 0	60 62 61 60 60
96 97 98 99 100	Ill. 1994. Ill. 3072. Ill. 3089. Ill. 3090. Ill. 3100.	104 104 104 104 104	24 23 23 24 20	75 76 78 78 83	95 60 67 68 97	94 98 98 88 97	45 49 48 49 45	0 0 0 0 0	0 0 0 3	60 65 61 61 59
101 102 103 104 105	Ill. 3121. Kan. 1884. Ill. 21-3. Ill. 1912. Ill. 1947.	104 104 103 103 103	21 24 25 25 23	80 79 79 81 83	95 66 80 55 85	98 99 98 93 95	44 44 48 47 48	0 0 0 0	3 0 3 0 1	60 61 61 61 64
106 107 108 109 110	Ill. 1972. Ill. 1990. Ill. 3051. Ill. 3056. Ill. 3078.	103 103 103 103 103	24 20 22 19 24	81 80 78 80 76	69 84 92 81 70	96 95 97 97 96	45 41 49 43 47	0 0 0 0	1 0 1 0 1	61 60 61 60 61

Table 9. — Continued

Ran	k	Acre	Mois-	Shell-	Erect		Ear	Dropped		Half-
in yiel	Entry d	yield	ture in grain	ing	plants	Stand	height	Dropped ears	Smut	silk
	C — 195	7 resu	lts (3	replica	ations)	— Co	nclud	ed		
111 112 113 114 115	Ill. 3079. Ill. 3086. Ill. 3098. Ill. 3119. Ill. 3119. Ind. 4655.	bu. 103 103 103 103 103	<i>perct.</i> 20 22 25 28 24	<i>perct.</i> 78 79 79 77 77 78	perct. 76 87 75 86 94	<i>perct.</i> 99 95 97 100 90	in. 46 44 47 43 45	<i>perct.</i> 0 0 0 0	<i>perct.</i> 2 3 5 1 1	days 61 60 60 60
116 117 118 119 120	Ill. 1925	102 102 102 .102 102	24 21 20 21 20 19	80 76 79 78 80 81	87 88 84 74 74 84	98 97 92 98 94 98	43 48 45 48 45 45 43	0 0 0 0 0	0 3 0 1 0	60 60 60 60 60 60
121 122 123 124 125 126	Ill. 3113. Iowa 4906 Ill. 21. Ill. 1943. Ill. 3070. Ill. 3080	102 102 101 101 101 101	21 20 24 25 24	81 80 78 78 78 78	91 80 87 93 79	98 98 96 98 98 97	44 41 45 46 48	000000000000000000000000000000000000000	0 0 2 1 3	61 60 64 62 61
127 128 129 130 131	III. 3096 III. 3108 III. 1777 III. 1987 III. 1993	101 101 100 100	24 20 22 22 22 20	78 83 78 75 78	90 87 74 82 83	97 90 96 95 98	42 44 46 44 43	0 0 0 0	1 3 1 0	60 60 61 62 61
132 133 134 135 136	III. 3067 III. 3075 III. 3082 III. 3087 III. 3109	100 100 100 100 100	24 25 23 20 21	85 80 77 81 81	74 92 84 85 79	91 99 92 97 98	45 47 45 43 41	0 0 0 0	4 2 3 0 1	63 60 61 60 60
137 138 139 140 141	U.S. 13. III. 274-1. III. 1941. III. 1989. III. 3085.	100 99 99 99 99	20 21 23 21 20	78 81 74 76 79	76 89 76 89 68	92 90 98 92 93	48 48 52 42 48	0 0 0 0	2 0 5 0	61 63 60 61
142 143 144 145 146	Ill. 1948 Ill. 3061 Ill. 3064 Ill. 3104 Ill. 1570	98 98 98 98 98	23 20 24 26 23	78 82 80 80 76	78 76 63 82 61	100 96 94 97 99	47 42 45 48 47	0 0 0 0	2 0 3 2 2	62 61 61 61
147 148 149 150 151	Ill. 1977. Ind. 4656. Ill. 1951. Ill. 1992. Ill. 3050.	97 97 96 96 96	24 24 22 26 22	78 78 79 73 78	71 81 90 90 82	96 95 93 95 92	48 42 48 47 44	0 0 0 0	3 1 1 0 0	61 60 61 61 60
152 153 154 155	Ill. 3106 Ill. 1767 Ill. 1939 Ill. 3060	96 95 95 95 95	25 22 26 25	80 75 73 81 79	90 87 92 76	98 91 96 95	45 45 48 46	0 0 0 0	2 5 2 1	63 61 62 61
156 157 158 159 160	Ill. 3081. Ill. 3111. Ill. 1660. Ill. 3058. Ill. 3059.	95 94 94 94	23 20 37 19 23	80 74 80 78	85 89 84 91 84	92 99 100 95 97	44 47 54 46 43	0 0 0 0	3 0 1 1	61 61 68 61 60
161 162 163 164 165	Ill. 3063. Ill. 3069. Ill. 3120. Ill. 3125. Ill. 1949.	94 94 94 94 93	23 24 26 26 26	80 78 79 79 77	82 95 71 88 93	93 100 98 97 94	48 44 46 46 47	0 0 0 0 0	2 0 3 2 0	61 62 62 60 63
166 167 168 169 170	Ill. 3054. Ill. 3066. Ill. 3097. Ill. 1938. Ill. 3151.	93 93 93 92 92	20 23 20 28 21	78 81 78 75 74	78 85 75 95 85	100 92 97 95 95	43 43 44 47 45	0 0 0 0 0	0 1 3 0 0	61 61 64 62
171 172 173 174 175	Ill. 3071 Ill. 3073 Ill. 3074 Ill. 1950 Ill. 1950 Ill. 3057	91 91 90 90	26 26 23 28 22	75 77 79 77 79	67 94 91 94 85	95 96 98 96 98	50 45 45 45 45	0 0 0 0	0 2 1 0 0	65 62 62 64 60
176 177 178 179 180 181	Ind. 6623 Ill. 1940 Iowa 4907 GCP 6220 Ill. 1850 Ill. 2246W	90 89 89 88 88 73	20 27 24 23 34 24	76 75 74 76 72 71	84 91 90 90 85 78	98 97 98 92 96 95	49 46 44 51 53 50	0 0 0 0 0	1 0 5 1 2	66 63 62 65 68 63
	Average	104	23	78	81	97	47	0	1	61

Table 9. — Concluded

Table 10. — DOUBLE CROSSES OF ILLINOIS 1570 MATURITY Tested in Central Illinois (Field B), 1956-1957

Ran in yiel		Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	Half- silk
1 2 3 4 5	111. 111. 111.	1981 1851 1982 1995 1643	bu. 131 130 129 129 128	perct. 20 22 22 22 22 20	perct. 80 78 79 86 82	<i>perct.</i> 90 93 82 76 82	perct. 98 96 98 97 99	in. 49 50 50 49 50	<i>perct.</i> 0 2 2 3	perct. 4 6 2 4 2	days 68 72 68 67 70
6 7 8 9 10	I11. I11. I11.	1976 1978 1996 1913 1991	128 128 128 126 125	22 22 22 18 21	78 78 80 85 80	82 87 91 82 85	95 99 98 97 96	50 47 48 48 46	1 2 1 0 2	4 1 3 2	70 69 66 66 69
11 12 13 14 15	Ill. Ill. Ill.	1660 1918 1945 1985 1997	124 124 124 124 124	32 20 23 20 22	78 82 82 82 80	88 86 80 88	99 99 98 98 98	54 46 54 47 48	0 2 2 2 0	2 1 6 1 1	73 64 68 66 68
16 17 18 19 20	111. 111. 111.	1332 1919 1942 1944 1946	122 122 122 122 122 122	19 20 22 21 22	80 81 78 78 80	88 84 88 95 88	96 98 98 98 98 99	46 45 51 50 53	3 0 0 0 0	2 4 10 6 6	66 66 68 66 67
21 22 23 24 25	111. 111. 111.	1947 1980 1983 1992 1984	122 122 122 122 122 121	22 18 18 22 22 22	82 81 84 78 78	87 94 92 93 84	97 98 100 97 98	49 48 46 46 47	0 2 2 0 0	3 1 3 1 0	68 66 67 66
26 27 28 29 30	I11. I11. I11.	1570-1 1570 A 1880 1943 1948	120 120 120 120 120	21 20 18 22 22	80 80 83 80 80	86 84 86 92 85	100 100 99 98 100	46 46 45 45 48	2 2 4 0 0	1 0 1 2 5	66 66 68 66
31 32 33 34 35	Ill. Ill. Ill.	1994 1951 1939 1941 1986	120 119 118 117 117	22 20 24 22 20	78 82 77 78 82	94 91 96 86 89	96 96 98 99 95	46 50 47 51 44	1 0 0 0 0	1 2 4 8 3	66 66 67 68 66
36 37 38 39 40	I11. I11. I11.	1977 1987 1949 1570 1988	116 116 115 114 113	20 20 24 20 20	80 78 79 80 80	83 88 96 75 86	98 97 96 98 96	$47 \\ 46 \\ 46 \\ 48 \\ 44$	2 4 0 2 2	4 1 2 2 0	66 67 67 66 66
41 42 43 44 45	I11. I11. I11.	1993. 1938. 1990. 1940. 1950.	113 112 112 110 109	18 26 18 24 25	80 77 82 78 79	90 96 91 94 96	98 97 97 98 98	44 46 40 46 46	1 0 0 0 0	2 2 0 4 0	66 68 64 68 68
46 47	I11.	1989 2246W Average	109 107 120	20 20 21	79 78 80	93 86 88	96 98 98	42 50 47	2 3 1	0 2 3	66 68 67

BULLETIN No. 623

Table 11. - HIGH-OIL DOUBLE CROSSES AND STANDARDS

Tested in Central Illinois, 1957

(Data in **boldface** were not statistically different from the best performance for that characteristic)

Ran in yiel	Entry	Acre yield	Oil		Pro	tein	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut	Half- silk
				A —	High-	oil dou	ble cro	osses					
		bu.		b. per acre	perct.	lb. per acre	perct.	perct.	perct.	perct.	in.	perct.	days
1 2 3 4 5 6 7	Ill. 6062 Ill. 6052 Ill. 6016 Ill. 6021 Ill. 6084 Ill. 6075 Average	137 136 131 131 124 122 119 129	5.46 5.93 5.88 5.14 4.77 4.92	413 416 435 431 357 326 328 387	$11.46 \\ 10.53 \\ 11.00 \\ 10.56 \\ 10.62 \\ 10.41 \\ 10.31 \\ 10.70$	879 802 807 774 738 711 687 771	27 22 23 24 21 22 22 22 23	78 77 78 80 77 81 78	55 67 50 60 25 23 45 46	97 99 95 97 96 99 97	56 55 57 54 55 47 45 53	1 3 1 1 1 1 1	66 65 66 64 63 63 65
]	B — St	andard	check	S					
1 2 3 4 5 6	Ill. 1332 U.S. 13 K4×38-11 WF9×38-11 Hy2×WF9. Ill. High Oil ^a Average	141 137 131 126 122 50 118	4.62 5.29 4.44 3.74 11.03	350 354 388 313 255 309 328	9.46 9.62 11.10 10.68 8.41 12.19 10.24	747 738 814 754 575 342 662	21 23 28 22 22 20 23	80 79 76 77 78 80 78	74 65 74 79 78 40 68	100 96 97 100 95 90 96	48 54 58 47 44 27 46	0 1 2 1 12 3	64 65 69 61 36 63

^a Open-pollinated variety.

Table 12. — THREE-WAY, SINGLE, AND DOUBLE CROSSES OF ILLINOIS 1570 MATURITY

Tested in Central Illinois, 1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Cod	e Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut	Half- silk				
	A — Inbred lines crossed with (Hy $ imes$ WF9)												
1 2 3 4 5	L317 38-11. B44. Cl.31A. K799.	<i>bu.</i> 137 134 129 147 134	<i>perct.</i> 23 22 24 27 26	<i>perct.</i> 78 79 81 78 80	perct. 36 47 61 82 83	<i>perct.</i> 99 98 99 99 99	in. 54 50 43 54 54	<i>perct.</i> 0 0 1 0 1	days 65 65 63 65 64				
6 7 8 9 10	K800 Mo11662 Mo11276 Oh3C Oh3F	116 123 122 129 146	20 26 23 27 25	80 79 80 76 77	49 66 62 96 94	99 97 97 91 99	50 50 43 46 46	1 0 1 1 1	61 64 65 64				
11 12 13 14 15	Oh4G. Oh7K. Oh7N. Oh7P. R113.	135 132 136 144 109	28 25 24 25 22	74 78 76 72 77	91 71 77 82 47	100 99 100 98 97	46 46 43 53 44	0 0 1 0	66 63 63 65 62				
16 17 18 19 20	R153. R154. R159. R166. R168.	132 127 133 113 130	24 21 23 22 24	77 81 80 82 79	69 51 88 35 98	100 97 97 99 100	46 52 48 41 46	0 2 2 1 2	62 62 62 62 62				
	Average	130	24	78	69	98	48	1	63				
	B—Inbred lines crossed with (WF9 $ imes$ 38-11)												
21 22 23 24 25 26 27 28 29 30	Hy. B44. CI.31A. K799. K800. Mo11662. Mo11276. Oh3F. Oh4G. Oh7N.	135 136 139 120 115 129 126 125 140 119	23 21 30 26 21 23 22 28 28 28 28 24	78 81 77 77 80 79 78 72 74 75	58 81 82 88 53 73 87 98 87 98 86 63	97 98 97 97 100 96 98 98 98 92	53 44 55 47 48 47 44 47 51 45	2 0 1 0 3 2 3 2 1 1	65 65 64 64 64 64 64 66 67 66				
31 32 33 34 35 36	R113. R153. R154. R159. R166. R168. Average.	117 119 132 137 110 124 126	26 21 22 22 22 22 22 22 22	74 78 80 80 80 79 78	60 63 67 79 48 95 74	93 97 97 99 94 97 97	46 45 51 46 42 46 47	1 0 1 4 1	65 63 64 63 62 62				
		: — Si	ingle c	rosses									
37 38	Hy×WF9 WF9×38-11 Average	122 126 124	22 22 22	78 77 78	78 79 78	95 100 98	44 47 46	1 2 2	60 64 62				
	D	— D	ouble o	rosse	S								
39 40	Ill. 1332. U.S. 13. Average.	141 137 139	21 23 22	80 79 80	74 65 70	100 96 98	48 54 51	0 1 0	64 65 64				

BULLETIN NO. 623

Table 13. — SINGLE AND DOUBLE CROSSES OF ILLINOIS 1570 MATURITY

Tested in Central Illinois, 1957

Cod	le	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut	Half- silk				
	A — Single crosses													
1 2 3 4 5	$\begin{array}{c} Hy2 \times R74 \dots \\ Hy2 \times R113 \dots \\ Hy2 \times R127 \dots \end{array}$		<i>bu</i> . 120 127 114 127 86	<i>percl.</i> 20 19 17 18 19	<i>perct.</i> 81 82 81 86 83	<i>perct.</i> 100 100 98 99 97	perct. 94 98 98 98 94 91	<i>in.</i> 45 42 45 44 42	<i>perci.</i> 0 0 1 1 0	days 74 72 71 72 75				
6 7 8 9 12	Hy2×R168 Hy2×WF9 Hy2×38-11		118 110 124 128 114	17 17 18 19 22	84 82 84 84 81	91 98 99 72 99	92 96 96 98 94	45 43 40 49 37	0 1 1 1 2	73 72 71 75 74				
13 14 15 16 17	R71×R127 R71×R129 R71×R154	· · · · · · · · · · · · · · · · · · ·	97 111 124 128 97	19 19 20 19 19	80 83 80 84 83	97 93 91 82 100	91 92 99 96 89	41 40 42 43 41	0 1 2 1 1	74 74 76 74 73				
18 19 23 24 25	R71×38-11 R74×R113 R74×R127	· · · · · · · · · · · · · · · · · · ·	120 123 96 120 121	17 18 18 19 20	80 81 78 83 80	97 91 100 97 98	96 96 92 99 93	36 42 38 40 37	0 0 2 1 0	73 75 71 73 72				
26 27 28 29 34	R74×R168 R74×WF9 R74×38-11		117 109 123 118 107	18 18 18 19 16	82 83 81 82 83	97 100 100 99 95	92 99 91 91 90	40 40 33 40 41	4 1 0 1 1	71 71 70 74 73				
35 36 37 38 39	$\begin{array}{c} R113 \times R154. \\ R113 \times R168. \\ R113 \times WF9. \end{array}$		109 107 93 106 105	17 15 17 16 16	83 83 83 82 82	100 93 99 99 99	91 97 88 94 95	39 40 37 37 40	1 1 3 2 0	74 71 70 70 72				
45 46 47 48 49	R127×R154. R127×R168. R127×WF9.		110 130 106 110 124	17 17 17 16 18	83 85 85 85 86	79 70 95 96 65	79 95 94 91 86	40 43 40 35 44	0 1 2 1 1	75 73 73 71 75				
56 57 58 59 67	R129×R168. R129×WF9. R129×38-11. R154×R168.	••••••	112 107 123 112 111	16 19 16 17 17	85 82 82 82 83	55 93 98 86 93	89 89 96 90 92	41 38 36 38 41	3 1 0 2 2	73 73 72 75 7 1				
68 69 78 79 89	R154×38-11. R168×WF9. R168×38-11.		124 120 107 115 111	17 16 16 16 17	83 86 82 85 84	95 51 98 95 96	94 96 97 97 90	40 47 39 44 39	6 3 0 1 1	71 75 70 73 73				
	Average.	В	114 — Do	uble ci	83 Cosses	92	93	41	1	73				
91 92 93 90	Ill. 1570 Ill. 1893 AES 805		131 128 124 123 126	18 18 20 18 18	84 80 81 83 82	98 94 89 96 94	94 92 91 96 93	41 43 42 39 41	4 8 2 2 4	74 75 73 71 73				

Table 14. — CORN-BORER-RESISTANT SINGLE CROSSES AND DOUBLE-CROSS STANDARDS OF ILLINOIS 1570 MATURITY

Tested in Central Illinois, 1957

1 2 3 4 5	A R71×R74. R71×R96B. R71×R109B. R71×R110. R71×R112.	$-Sin \frac{bu.}{95}\frac{102}{107}$	perct.															
2 3 4	$\begin{array}{c} R71 \times R96B. \\ R71 \times R109B. \\ R71 \times R110. \\ \end{array}$	95 102	-	the second				A — Single crosses										
6	R71×R113	94 93 96	17 19 19 17 16	<i>perct.</i> 81 85 82 79 83 81	<i>perct.</i> 99 92 98 98 98 98	perct. 96 97 94 92 97 92	in. 33 33 36 38 33 33 36	perct. 4 1 4 3 5 1	days 73 74 74 75 74 72									
8 9 12 13 14	$\begin{array}{c} R71 \times R115. \\ R71 \times R168. \\ R74 \times R96B. \\ R74 \times R109B. \\ R74 \times R109B. \\ \end{array}$	100 109 96 112 103	19 18 16 19	80 83 83 81 78	93 95 94 99 97	97 94 93 96 97	43 39 32 36 34	11 1 3 1 4	76 74 72 72 74									
15 16 17 18 19	R74×R112 R74×R113 R74×R114 R74×R114 R74×R115 R74×R168	118 99 103 107 112	18 17 17 19 17	84 81 79 80 84	99 98 98 89 100	96 90 95 94 91	33 38 36 42 37	2 3 0 2 0	72 72 73 74 72									
23 24 25 26 27	$R96B \times R109B. R96B \times R110. R96B \times R112. R96B \times R113. R96B \times R114. P06B \times R114. P06B \times R114. P06B \times R144. P06B \times R144.$	113 97 104 95 103	17 15 15 15	84 82 85 83 86	76 91 98 86 96	94 93 93 95 98	38 36 35 40 35	1 1 4 2 2	74 74 72 73 74									
28 29 34 35 36	R96B×R115. R96B×R168. R109B×R110. R109B×R112. R109B×R113.	95 108 103 121 90	15 16 17 17 16	84 84 80 84 83	81 90 92 98 97	93 89 95 98 91	41 34 38 35 36	5 3 0 2	75 74 72 73									
37 38 39 45 46	R109B × R114. R109B × R115. R109B × R168. R110 × R112. R110 × R113.	109 118 101 98 97	17 17 17 15 15	81 81 81 81 84	100 83 97 95 93	93 96 90 94 94	38 47 39 34 39	2 2 8 2 2	74 76 72 73 75									
47 48 49 56 57	$\begin{array}{c} R110 \times R114. \\ R110 \times R115. \\ R110 \times R168. \\ R112 \times R113. \\ R112 \times R114. \\ \end{array}$	99 86 102 94 99	15 15 16 16	81 77 80 85 84	99 88 91 99 100	95 98 92 91 94	37 40 41 33 33	2 17 3 4 2	75 75 73 72 74									
58 59 67 68 69	R112×R115. R112×R168. R113×R114. R113×R115.	118 109 96 98 99	18 17 15 16 15	85 84 81 82 82	93 96 97 98 98	90 95 92 94 92	38 35 41 35 35	4 4 2 1 0	74 73 74 72 71									
69 78 79 89	R113×R168 R114×R115 R114×R168 R115×R168 Average	99 95 106 115 103	15 14 16 16 17	82 81 80 82 82	98 97 100 94 95	92 93 90 94 94	35 42 39 42 37	17 3 21 4	71 75 73 75 74									
	B — Double crosses'																	
92 91 93 07 90	AES 805. AES 702. Ill. 3057 Ill. 3059. AES 610. Average.	125 118 106 98 97 109	19 18 17 17 16 17	82 80 85 79 85 82	97 98 100 97 98 98	97 92 95 88 93 93	36 34 35 37 26 34	4 1 0 0 1 1	73 72 72 72 69 72									

Table 15. — INBRED LINES OF ILLINOIS 1570 MATURITY Tested in Central Illinois, 1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut	Half- silk
		bu.	perct.	perct.	perct.	perct.	in.	perct.	days
1	R71	50	18	71	97	97	25	3	82
2	R74	48	18	72	100	94	23	2	80
3	38-11	47	15	77	86	94	33	3	84
4	R154	44	16	77	78	79	31	5	79
5	WF9	41	16	72	99	94	20	7	77
6	R168	39	15	75	82	91	29	4	77
7	R127	38	17	75	79	73	29	1	83
8	Ну2	35	19	70	99	85	27	0	82
9	R113	30	14	60	99	96	24	33	77
10	R129	24	15	67	44	75	23	0	82
	Average	40	16	72	86	88	26	6	80

Table 16. — CORN-BORER-RESISTANT INBRED LINES OF ILLINOIS 1570 MATURITY

Tested in Central Illinois, 1957

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut	Half- silk
		bu.	perct.	perct.	perct.	perct.	in.	perct.	days
1	R74	50	18	74	100	94	19	1	79
2	R71	47	19	73	97	94	24	3	82
3	R109B	40	17	76	85	86	26	0	80
4	R168	38	16	75	81	90	26	3	77
5	R113	36	14	67	96	89	25	6	76
6	R114	32	15	68	99	90	31	6	86
7	R112	28	16	76	75	92	23	ī	80
8	R110	26	14	66	88	87	29	4	84
9	R96B	25	15	69	99	89	22	0	82
10	R115	17	16	62	92	81	34	46	87
	Average	34	16	71	91	89	26	7	81

Table 17. — DOUBLE CROSSES OF ILLINOIS 1851 MATURITY Tested in South-Central Illinois, 1955-1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut
	A — Th	ree-ye	ear ave	rages,	1955-	1957			
1 2 3 4 5	Ill. 1851 AES 805. Ill. 1893 Ill. 1913 AES 904W	bu. 81 79 78 78 78 77	<i>perct.</i> 26 23 25 20 28	perct. 75 77 76 79 77	perct. 66 73 76 71 69	<i>perct.</i> 99 98 100 99 100	in. 53 49 54 50 54	<i>perct.</i> 0 1 1 0	perct.
6 7 8 9 10	Ill. 1349. Ill. 1919. Ill. 1657. Ill. 1918. Ill. 1539A. Ill. 1539A.	77 77 76 76 75 75	26 22 28 25 28 28 22	79 78 77 77 77 77 78	65 76 46 78 64 76	98 96 98 98 99 99	55 48 52 48 54 49	2 0 1 1 1	•••
11 12 13 14 15 16	Ill. 1909. Ill. 1570. Ill. 1332. Ill. 1771. Ill. 1852. AES 903W.	74 73 73 73 72	22 24 25 27 27 26	76 77 78 72 71	68 78 71 63 59	98 97 95 95 99	49 50 51 52 48	1 0 1 0 0	· · · · · · ·
17 18 19 20 21	Ill. 200. Ill. 1849. Ill. 1850. Ill. 1859. Ill. 1656.	72 72 72 72 72 71 71	26 28 28 27 25 27	77 73 76 76 78	59 76 67 58 66	98 97 99 99 99 95 97	56 52 53 49 48	0 2 1 1 0	•••
22 23 24 25 26 27	Ill. 1856. U.S. 523W. Ill. 1857. Ill. 2246W. Mo. 804. U.S. 12	70 69 69 67	27 27 28 23 25 24	73 74 74 77 75 76	72 48 55 66 60 57	97 98 95 96 100 95	51 50 51 50 55 51	1 0 1 1 0 0	· · · · · · ·
	U.S. 13 Average	65 73	24	76	66	95	51	1	
	B — Tw	70-yea	ar aver	ages,	1956-1	957			
1 2 3 4 5	Ill. 1851. Ill. 1935. AES 805. Ill. 1919. AES 904W.	88 88 86 85 84	28 24 26 24 32	74 78 76 77 76	84 93 90 93 94	99 99 96 96 100	56 50 50 48 54	0 0 0 0	0 0 2 2
6 7 8 9 10	Ill. 1893. Ill. 1913. Ill. 1349. Ill. 1349. Ill. 1539A. Ill. 1918.	84 82 82 82	28 22 30 32 28	74 79 78 76 76	93 95 86 86 91	100 99 98 98 96	54 51 57 55 48	0 1 1 0 0	0 0 1 0 0
11 12 13 14 15	Ill. 1945. Ill. 1948. Ill. 1657. Ill. 1657. Ill. 1771. Ill. 1889. Ill. 000	82 82 81 80 80	28 27 30 30 26	78 77 75 77 76	88 87 60 90 92	99 96 98 94 98	53 50 54 52 49	0 0 1 0	1 2 0 0 2
16 17 18 19 20	Ill. 1909. Ill. 1922. Ill. 228. Ill. 200. Ill. 1332. Ill. 570.	80 80 80 79 78	26 27 28 28 28 28	77 76 75 77 76	94 96 94 80 96	96 98 100 98 98	50 50 56 52	0 0 1 0 0	0 0 1 0 0
21 22 23 24 25	Ill. 1570. Mo. 916. Ill. 1850. AES 903W. Ill. 1852. Ill. 1852.	78 78 77 76 76	26 30 30 30 30	74 72 74 70 70	90 94 84 84 80	98 98 100 98 94	50 54 54 48 52	000000000000000000000000000000000000000	2 1 0 0
26 27 28 29 30	III. 1859 Mo. 804 III. 1849 III. 1926 III. 1927	76 76 75 75 75	31 28 32 26 28	74 74 68 74 74	69 81 93 92 90	100 100 98 97 98	48 56 53 48 48	0 0 1 0 0	2 1 0 0 0

ō

0

ō

ō

Ô

ŏ

Rank Mois-Acre Shell-Erect Ear Dropped Stand Smut in Entry ture in height yield ing plants ears yield grain B-Two-year averages, 1956-1957-Concluded perct. berct. perct. perct. bu. perct. perct. in. Ill. 1946.... Ill. 1656..... Ill. 1942 Ill. 1947 Ô Ill. 1951..... U.S. 523W III. 1856. III. 1857. 4 72^{-1} Ill. 1940.... Ill. 2246W.... Ill. 1949..... Ill. 1939..... U.S. 13..... Ill. 1938..... Ill. 1950.... Ill. 1941..... Average.... C - 1957 results (3 replications) Ill. 1935. Ill. 1919..... I11. **AES 805** Ill. 1913..... n Ill. 3136.... Ill. 1893..... 111. 1948..... Ill. 3126..... Ill. 1928..... Ill. 1945 Ind. 6874 Ill. 1922..... Ill. 3129..... Ill. 3133..... Ill. 3143..... Ill. 3148..... Ill. 200.... Ill. 1889..... Ill. 3147..... Ill. 1918..... Ill. 1946.... Mo. 916.... ٥n Ill. 1951..... Ill. 3149..... III. 570 III. 1657 III. 1771 2 III. 1880 Ill. 1909..... T11. <u>60</u> **AES 904W** n Ill. 1349..... Ill. 1660..... Ill. 1927..... Ill. 1942 1539A I11. GCP 6220..... 0.3 U.S. 619W..... Ill. 3138 Ō Ill. 3138.... TRF 13W.....

Table 17. - Continued

(Table is concluded on next page)

Table 17. — C	oncluded
---------------	----------

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	
	C — 1957 results (3 replications) — Concluded									
		bu.	perci.	perci.	perci.	perct.	in.	perci.	percl.	
44 45	Ill. 1940 Ill. 1944	68 68	43 41	69 71	83 72	99 99	50 48	0 0	0 2	
$\frac{46}{47}$	Ill. 3059	68 68	36 43	73 69	75 88	99 94	42 46	0	0	
48	Ill. 3145 Ill. 1921	67	42	69	72	94	44	0	2 0	
49 50	U.S. 523W Ill. 1926	67 66	45 38	67 69	48 86	99 94	46 44	0 0	0 0	
51 52	Ill. 3058 Ill. 3128	66 66	$\frac{34}{44}$	72 69	97 65	99 99	48 57	0	0	
53	Ill. 3150	66	43	67	72	96	46	Ō	0	
54 55	AES 903W Ill. 1850	65 65	43 45	63 65	71 75	97 99	44 48	0	0 0	
56 57	Ill. 1943 Ill. 3139	65 65	40 42	68 67	61 95	92 99	40 47	0	0	
58	Ill. 3140	65	45	65	47	99	56	Ō	Õ	
59 60	Ill. 1859 Ill. 3130	64 64	46 43	67 71	52 52	99 94	46 50	0 0	0 0	
61 62	Ill. 3137 Mo. 804	64 64	44 40	68 68	73 68	97 99	55 52	0	0	
63	Ill. 1852	63	45	57	69	91	49	Ō	Ō	
64 65	Ill. 19 50	63 63	41 44	71 71	53 70	99 96	46 55	0 0	0 0	
66 67	Mo. 958	62 61	48 42	61 65	44 91	97 97	54 49	0	0	
68	Ill. 1949 Ill. 2246W	61	37	68	83	92	48	ŏ	ŏ	
69 70	Mo. 800-3 TRF 9W	61 61	$\begin{array}{c} 46 \\ 45 \end{array}$	61 64	32 67	99 99	50 48	0 0	0 3	
71 72	Ill. 1656 Ill. 1939	60 60	43 41	69 66	79 97	86 96	40 46	0	0	
73	Ill. 3057	60	38	74	78	92	38	0	Ō	
74 75	Ill. 3135 Ill. 1849	60 59	45 45	65 56	95 90	96 96	47 50	0 0	0	
76 77	Ill. 3144 Ill. 3127	59 58	47 45	71 66	74 98	91 96	49 48	0	0	
78	Ill. 3142	58	44	66	54	94	46	Ō	ŏ	
79 8 0	Ill. 3146 Ind. 6615	58 58	42 46	57 61	82 95	99 99	55 46	0	0 0	
81 82	Ill. 1856 Ill. 1938	57 57	45 45	58 64	97 90	97 96	46 45	0	0	
83	Ill. 1857	56	46	65	62	87	46	0	ō	
84 85	Ill. 3131 TRF 3W	56 56	45 45	69 63	79 73	92 97	48 50	0 0	0 0	
86 87	U.S. 13	55	42 46	67	61 84	92 84	50	0	0	
88	TRF 10. Ill. 1941.	54 53	46	68 57	84	97	42 52	Ō	Ō	
89 90	Ill. 3132 Kan. 2472W	49 48	$\begin{array}{c} 47\\ 44 \end{array}$	66 59	59 71	84 96	50 36	0 0	0	
	Average	68	42	68	77	96	48	0	0	

[January,

Table 18. — SINGLE AND DOUBLE CROSSES OF ILLINOIS 1851 MATURITY

Tested in South-Central Illinois, 1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Code	e Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
	A	— Sin	gle cros	sses				
1 2 3 4 5	$\begin{array}{c} C103 \times Hy2. \\ C103 \times R113. \\ C103 \times R153. \\ C103 \times R154. \\ C103 \times R154. \\ C103 \times R159. \end{array}$	bu. 94 91 87 9 7 77	<i>perct.</i> 33 30 36 30 36	perct. 75 70 71 71 71 71	perct. 95 47 71 88 91	percl. 96 97 98 99 99	<i>in.</i> 46 49 49 49 49	<i>percl.</i> 0 0 0 0 1
6 7 8 9 12	C103×R166. C103×R168. C103×8168. C103×08-11. C103×0h7. Hy2×R113.	86 88 104 87 89	33 30 29 32 29	76 74 72 69 71	99 84 98 84 99	96 99 99 97 98	40 47 53 46 48	0 0 0 0 0
13 14 15 16 17	$\begin{array}{c} Hy2 \times R153, \\ Hy2 \times R154, \\ Hy2 \times R159, \\ Hy2 \times R166, \\ Hy2 \times R166, \\ Hy2 \times R168, \\ \end{array}$	85 91 79 72 82	34 32 32 36 29	75 78 73 77 77	96 92 90 99 97	97 99 97 96 98	44 47 49 38 44	0 0 0 0
18 19 23 24 25	$\begin{array}{c} Hy2 \times 38{\text{-}}11 \\ Hy2 \times 0h7 \\ R113 \times R153 \\ R113 \times R154 \\ R113 \times R159 \\ R113 \times$	93 86 73 91 71	30 28 32 29 32	75 78 71 76 71	93 83 88 77 98	98 92 89 99 90	49 47 46 45 47	0 0 0 0 0
26 27 28 29 34	R113×R166. R113×R168. R113×83-11. R113×0h7. R153×R154.	72 69 87 74 87	32 29 31 36 31	73 73 72 69 73	78 94 81 46 97	99 98 99 96 99	39 41 50 47 43	0 1 0 0 0
35 36 37 38 39	$\begin{array}{c} R153 \times R159 \\ R153 \times R166 \\ R153 \times R168 \\ R153 \times 38-11 \\ R153 \times Oh7 \\ \end{array}$	68 68 72 76 70	37 36 34 36 33	67 76 73 67 69	71 76 91 59 93	98 96 99 99 95	49 37 45 51 43	0 0 0 0
45 46 47 48 49	$\begin{array}{c} R154 \times R159 \\ R154 \times R166 \\ R154 \times R168 \\ R154 \times R168 \\ R154 \times 38\text{-}11 \\ R154 \times Oh7 \\ \ldots \end{array}$	89 77 87 86 83	30 31 26 29 31	76 80 79 76 77	77 71 98 89 69	97 97 98 91 98	48 42 45 52 44	0 0 0 0
56 57 58 59 67	$\begin{array}{l} R159 \times R166 \\ R159 \times R168 \\ R159 \times 88-11 \\ R159 \times Oh7 \\ R166 \times R168 \end{array}$	70 74 90 70 73	36 30 30 35 29	78 76 73 74 78	99 99 84 82 99	99 95 99 98 99	40 50 51 47 40	0 0 0 0
68 69 78 79 89	$\begin{array}{c} R166 \times 38{\text{-}}11 \\ R166 \times 0h7 \\ R168 \times 38{\text{-}}11 \\ R168 \times 0h7 \\ 38{\text{-}}11 \times 0h7 \\ \ldots \end{array}$	71 71 87 82 78	33 34 26 32 35	76 77 78 79 69	95 99 95 74 64	94 96 95 97 98	44 39 49 44 52	0 0 0 0
	AverageB-	81 - Doi	32 able cro	74 sses	86	97	46	0
93 92 91 90	Ill. 1893. Ill. 1570. Ill. 1332. AES 805.	97 93 92 83	32 30 29 31	72 72 74 68	74 78 93 89	99 99 99 95	51 42 49 45	1 0 1 0
	Average	91	30	72	84	98	47	0

Table 19. — INBRED LINES OF ILLINOIS 1851 MATURITY Tested in South-Central Illinois, 1957

Rani in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Smut
		bu.	perci.	perct.	perct.	perct.	in.	perct.
1	R166	37	23	75	75	95	20	1
2	Oh7	32	33	72	40	97	31	ō
3	R159	26	42	65	35	82	33	0
4	R153	25	42	63	48	82	30	0
5	R168	24	42	71	72	92	29	0
6	C103	21	34	63	71	74	28	0
7	38-11	19	42	62	55	98	34	Ō
8	R154	19	42	60	40	91	33	0
9	Hy2	16	42	54	44	88	27	0
10	R113	12	42	45	34	93	26	0
	Average	23	38	63	51	89	29	0

(Data in boldface were not statistically different from the best performance for that characteristic)

Table 20. — TOP AND DOUBLE CROSSES OF ILLINOIS 1851 MATURITY

Tested in Southern Illinois, 1957

(Data in boldface were not statistically different from the best performance for that characteristic)

Code	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height
	A — Inbred lines of	rossed	with	(Mo. 80	04)		
2 Mo9108 3 Mo9294 4 Mo11077		<i>bu.</i> 100 100 92 89 105	<i>perct.</i> 16 17 16 16 16	perct. 80 85 84 89 83	perct. 99 99 100 99 99	perct. 95 98 97 99 98	in. 50 48 53 42 47
7 Mo11276 8 Mo01392 9 Mo01480		95 75 86 92 88	16 16 17 16 16	85 80 86 85 83	99 99 100 96 98	96 99 97 97 96	48 39 45 47 55
12 Ks76-55 13 Ks86-55 14 Ks133-53		83 113 81 100 78	17 17 16 16 16	75 91 86 85 85	99 100 94 96 100	94 99 98 98 100	44 40 49 46 48
17 R113 18 R153 19 R154		85 78 92 93 104	17 15 16 15 15	85 83 83 84 85	100 99 99 87 98	96 98 96 84 96	47 46 49 42 45
22 R173 23 CI.90A 24 CI.91B		98 84 100 76 93	16 15 17 16 18	89 83 85 84 84	99 99 99 98 100	97 99 98 96 96	38 36 47 55 50
26 NC220 27 NC222 28 NC224		111 86 93	17 20 16	84 81 83	99 100 100	94 97 98	51 54 42
Average	B — Do	92 uble cr	16 osses	84	98	97	47
30 Ill. 1851 29 Mo. 804		119 108	15 15 15	85 84 84	99 99	98 99	50 48

Table 21. — AVERAGE PERFORMANCE OF INBRED LINES AS MEASURED IN SINGLE CROSSES^a (Comparisons can be made only within each section) Rank Mois-Dropped Smut Half-Shell-Erect Ear Acre Stand in Entry ture in yield plants height silk ing ears yield grain A-Ill. 1277 maturity (summarized from Table 4) bu. perct. perct. perct. perct. in. perct. perct. days B14..... Oh43..... M14. R113..... R165..... Ò W64A..... . . WF9..... R168..... Average..... B-Ill. 21 maturity (summarized from Table 7) B14.. Hy2. WF9 R165 õ . . R109B..... . . R113..... . . R168..... . . Oh28..... Ó . . R166.... R172..... Ō . . Average..... C — Ill. 1570 maturity (summarized from Table 13) R154..... n Hy2. 38-11 R74..... R127..... .5 WF9..... n R71.. n R129 R168 R113..... Average.....

$\ensuremath{^{\mathrm{s}}}$ Calculated for each inbred by averaging the performance of single crosses in which it was one of the parents.

Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height	Dropped ears	Smut	Half- silk
D — Ill. 157	70 ma	turity	(sumr	narize	d fron	1 Tabl	le 14)		
R109B R168 R112 R74 R115 R96B R114 R114 R110 R110 R113 Average	<i>bu</i> . 108 107 106 105 104 101 101 100 98 96 103	<i>percl.</i> 17 16 16 18 17 16 16 18 16 16 16 17 17 16 16 17 17 16 16 17 16 17 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 18 17 16 16 17 16 16 18 17 16 16 17 16 16 17 16 16 17 16 16 18 17 16 16 18 17 16 16 16 18 17 16 16 16 16 16 18 17 16 16 16 16 16 18 17 16 16 18 17 16 16 18 17 16 18 17 16 16 18 17 16 18 17 16 16 18 17 16 16 18 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 17 16 17 17 17 16 17 16 17 16 17 17 17 17 16 17 17 17 17 17 17 17 17 17 17	<i>perci.</i> 82 82 84 81 81 84 82 82 80 82 82 82	<i>perct.</i> 93 96 97 97 91 89 98 97 98 97 94 96 95	<i>perct.</i> 94 92 94 94 94 94 94 95 94 92 94	in. 38 38 34 36 41 36 38 36 37 37 37	<i>perct.</i> 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>perct.</i> 3 5 3 2 9 2 4 4 4 2 4	days 73 73 73 73 75 74 74 74 74 74 74 73 74
E — Ill. 185	51 ma	turity	(sumr	narize	1 fron	1 Tabl	le 18)		
C103 R154. Hy2 38-11. R113. R168. Oh7. R153. R159. R159. R166.	90 88 86 80 79 78 76 76 76 73	32 30 31 31 31 31 29 33 34 33 33 34	72 76 75 73 72 76 73 71 73 71 73 77	84 84 94 84 79 92 77 82 88 91	98 97 97 96 98 96 97 97 97	48 46 46 50 46 45 45 45 45 45 48 40			· · · · · · · · ·
	R109B R168 R112 R74 R74 R96B R114 R71 R110 R113 Average E — III. 185 C103 R154 Hy2 38-11 R113 R168 Oh7 R153 R159	$\begin{array}{c} bu.\\ R109B108\\ R168107\\ R112106\\ R74105\\ R115106\\ R74105\\ R114105\\ R116101\\ R96B101\\ R96B101\\ R114101\\ R71100\\ R11098\\ R11396\\ Average103\\ \hline \textbf{E}Ill. 1851 ma\\ \hline \textbf{C103}90\\ R15488\\ Hy286\\ R11380\\ R15486\\ R11380\\ R15376\\ R15376\\ R15976\\ R15976\\ R16673\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	bu. percl. percl. percl. R109B 108 17 82 93 R168 107 16 82 96 R112 106 16 84 97 R74 105 18 81 97 R115 104 17 81 91 R96B 101 16 82 98 R114 101 16 82 97 R114	bu. percl. percl. <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 21. — Concluded

Table 22. — DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

(Hybrids that were high yielding and had excellent standability are indicated by table numbers in boldface type)

Hybrid	Pedigree	Table No.
Illinois hybrids		
21	(Hy2 \times 187-2) (WF9 \times 38-11)	2ABC, 6ABC, 7B, 9ABC
	(HyR \times 187R) (WF9TMS \times 38-11) (WF9 \times 38-11) (187-2 \times Cl.42A)	
	(HyR × 187-2) (WF9TMS × 38-11).	
01	(M14 \times WF9) (187-2 \times W26)	2ABC
200	(WF9 × 38-11) (L317 × K4)	
	(Hy2 \times WF9) (Oh7 \times 187-2)	
	(Hy2 \times L317) (WF9 \times Oh7) (Hy2 \times 187-2) (M14 \times WF9)	
	(M14 × WF9) (I.205 × 187-2)	
	(M14 × WF9) (A375 × 187-2)	
	$(M14 \times WF9) (Os420 \times 187-2) \dots$	
281	(M14 $ imes$ WF9) (A374 $ imes$ A375)	
	(M14 \times W22) (WF9 \times I.205)	
332	(Hy2 \times Oh7) (WF9 \times 38-11)	12D, 13B, 17ABC, 181
1332-2	(Hyr \times Oh7r) (WF9TMS \times 38-11).	
332-3	\ldots (WF9 \times 38-11) (Oh7 \times Cl.42A) \ldots	
332-4	(HyR $ imes$ Oh7) (WF9TMS $ imes$ 38-11)	
	(HyR × R61) (WF9TMS × 38-11)	
	(38-11 × Mo940) (K155 × K201)	
	(M14 \times WF9) (N6 \times Oh51A) (Hy2 \times WF9) (P8 \times Oh7)	
	$(WF9 \times I.205) (Oh28 \times W22)$	
	(Hy2 \times WF9) (38-11 \times L304A)	
539A	(38-11 $ imes$ Cl.7) (K201 $ imes$ Cl.21E)	
555A	(WF9 $ imes$ Oh51A) (I.224 $ imes$ Oh28)	
557	$(M14 \times Oh28)$ (I.205 $\times Oh51A$)	2AB
540A	(M14 \times Oh28) (WF9 \times Oh51A) (WF9 \times Oh51A) (I.205 \times Oh28)	
570	$(Hy_2 \times Oh_41)$ (WF9 \times 38-11)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17ABC, 18
570A	(Hy 2 \times WF9) (38-11 \times Oh41)	9C, 1
	(HyR \times Oh41) (WF9TMS \times 38-11).	
	(WF9 \times 38-11) (Oh41 \times Cl.42A) (M14 \times WF9) (L12 \times Oh28)	
643	$(C103 \times 38-11)$ (Hy2 \times Oh7)	
656	(C103 \times Hy2) (WF9 \times 38-11)	
656-1	\dots (C103 \times HyR) (WF9TMS \times 38-11) .	
656-2	(C103 $ imes$ Cl.42A) (WF9 $ imes$ 38-11)	
65/	(K4 \times Oh7) (K201 \times Cl.21E) (K4 \times K201) (Oh7 \times Cl.21E)	
	$(WF9 \times 38-11) (Oh29 \times Oh45)$	
767	$(WF9 \times 38-11) (Oh 29 \times Oh 45)$ (Hy2 × Oh 45) (WF9 × 38-11)	OAB
771	$(Oh7B \times CI.7)$ (T8 \times Cl.21E)	
777	$(Hy2 \times WF9)$ (R114 \times R116)	
813	(C103 $ imes$ Oh45) (Hy2 $ imes$ WF9)	9AB
814	(Hy2 \times WF9) (M14 \times Oh45)	
819	$\begin{array}{c}(\texttt{R2}\times\texttt{WF9})(\texttt{R61}\times\texttt{Oh43}).\ldots.\\(\texttt{WF9}\times\texttt{W146})(\texttt{K237}\times\texttt{Oh45}).\end{array}$	
	$1.100 \text{ F7} \land 0010 \text{ V14010 \text{ V37}} \land 00451$	OAB
831	(C103 × 38-11) (K201 × Cl.21E)	0C 174R

Table 22. — Continued

Hybrid	Pedigree	Table No.
Illinois hybrids (continue	d)	
	(C103 × 38-11) (Oh7 × CI.21E)	
	(C103 × CI.21E) (38-11 × Oh7) (38-11 × Oh7) (K201 × CI.21E)	
1857	$(38-11 \times Oh41)$ (K201 \times Cl.21E)	
1859	(38-11 $ imes$ Oh7) (Oh41 $ imes$ Cl.21E)	9C, 17ABC
1861	(M14 $ imes$ WF9) (I.224 $ imes$ Oh28)	
1862 (lowa 4779)	(M14 \times WF9) (Oh43 \times Oh51A) (M14 \times WF9) (I.205 \times Oh43)	2ABC /B 6ABC
	$(M14 \times WF9)$ (Oh43 $\times W22)$	
1866	(M14 $ imes$ WF9) (Oh26A $ imes$ Oh45)	2A BC
	(C103 \times Oh43) (Hy2 \times WF9)	
1873	(C103 \times M14) (R75 \times Oh43) (C103 \times 38-11) (Hy2 \times WF9)	
1880	$(R103 \times R104)$ (WF9 \times 38-11)	9ABC, 10, 17C
	(C103 $ imes$ Oh45) (38-11 $ imes$ Oh29).	
1890	$(C103 \times Oh45)$ (R75 \times 38-11)	
1893	(C103 \times 38-11) (Oh7B \times Oh29) (R138 \times R142) (R139 \times R141)	28C 68C 98C
1909	(R130 \times R151) (WF9 \times 38-11)	
	(R151 \times R156) (WF9 \times 38-11)	
	$(R151 \times R154) (WF9 \times 38-11) \dots$	
	(R130 \times R154) (WF9 \times 38-11) (R153 \times R154) (WF9 \times 38-11)	
1918	(R151 $ imes$ R153) (WF9 $ imes$ 38-11)	9ABC, 10, 17ABC
	(R130 $ imes$ R156) (WF9 $ imes$ 38-11)	
1921	(R71 \times R105) (WF9 \times 38-11) (Hy2 \times WF9) (R71 \times R105)	
1925	$(H_{v2} \times WF9)$ (R71 × R113)	9C
1926	($R71A \times R74$) ($R75 \times 38-11$)	6BC, 9BC, 17BC
	(Hy2 \times WF9) (R71A \times R74)	
	$(R75 \times 38-11)$ $(R98 \times R105)$ $(Hy2 \times WF9)$ $(R98 \times R105)$	
	$(C103 \times R101)$ (R75 \times 38-11)	
1936	$(H_{V2} \times WF9) (M14 \times B14) \dots$	
	\dots (R71 \times R105) (R98 \times R153) \dots	
	(R71 \times R98) (R105 \times R153) (R71 \times R153) (R98 \times R105)	
1941	$(R98 \times R105)$ (R130 \times R153)	9C, 10, 17BC
1942	\ldots (R98 $ imes$ R153) (R105 $ imes$ R130) \ldots	9C, 10 , 17BC
	(R71 × R105) (R153 × R154)	
1944	$(R71 \times R98)$ (R130 \times R153) (R98 \times R151) (R105 \times R130)	
	$(R98 \times R155)$ (R105 \times R130)	
1947	(R105 \times R130) (R153 \times R155)	9C, 10 , 17BC
	(R105 \times R151) (R153 \times R154)	
	$(R71 \times R105)$ $(R151 \times R153)$ $(R71 \times R105)$ $(R153 \times R155)$	
1951	(R71 $ imes$ R130) (R98 $ imes$ R155)	9C, 10, 17BC
	\dots (M14 \times B14) (A545 \times W64A) \dots \dots (M14 \times A223) (B14 \times W64A) \dots	
	(M14 \times A223) (B14 \times W04A) (M14 \times A297) (B14 \times A545)	
	$(M14 \times A297) (B14 \times A343) \dots$	
1956	\dots (M14 \times A545) (B14 \times A239) \dots	2BC
	\dots (M14 \times A545) (B14 \times W64A) \dots \dots (M14 \times Oh26A) (B14 \times A545) \dots	
	(IIII / OIIZOA/ (DI4 / AJ4J)	

Table 22. — Continued

Hybrid	Pedigree	Table No.
Illinois hybrids (continu		
1959 (Ind. 6225)	(M14 × W64A) (B14 × A297)	
1960	\dots (M14 \times W64A) (B14 \times A545) \dots (B14 \times A545) \dots (B14 \times A545) (A239 \times W64A) (A249 \times W64A) (A249 \times W64A) (A249 \times M64A) (A249 \times W64A) (28C
	$(B14 \times A545)$ (A297 \times W64A)	
1963	(B14 $ imes$ A545) (Oh26A $ imes$ W64A)	2BC
	\dots (R163 \times R165) (WF9 \times B14) \dots	
	(R163 \times R168) (WF9 \times B14) (R163 \times R169) (WF9 \times B14)	
	(R165 × R169) (WF9 × B14)	
1970	(R165 × R169) (WF9 × B14)	2C, 6BC
	(R168 $ imes$ R169) (WF9 $ imes$ B14)	
	\dots (R163 \times R165) (R168 \times R169) \dots	
	(R163 \times R168) (R165 \times R169) (R163 \times R169) (R165 \times R168)	
1975	(WF9 × CI.38B) (CI.42A × CI.317B)	
	(38-11 × Oh41) (Oh7 × Cl.21E)	
1977	\dots (WF9 \times 38-11) (Oh29 \times Oh41) \dots	9C, 10
	(C103 \times 38-11) (WF9 \times Oh7A)	
	(C103 \times B14) (WF9 \times 38-11) (WF9 \times 38-11) (Oh7 \times Cl.21E)	
	(C103 × 38-11) (WF9 × CI.21E)	•
	$(Hy_2 \times B14) (WF9 \times 38-11)$	
	(Hy2 \times WF9) (Oh29 \times Oh41)	
	$\dots (Hy2 \times WF9) (R61 \times Oh41) \dots (Hy2 \times WF9) (Oh43 \times 187-2) \dots (Hy2 \times WF9) (Oh43 \times 187-2) \dots (O$	
	(C103 \times B10) (Hy2 \times WF9)	
	(C103 \times B10) (Hy2 \times WF9)	
1989	\dots (Hy2 \times WF9) (M14 \times Oh29) \dots	9C, 10
1990	(Hy2 \times WF9) (M14 \times Oh43)	9C, 10
	(C103 × B10) (WF9 × Oh7A)	
	(C103 \times B14) (WF9 \times Oh7A) (WF9 \times Oh41) (B10 \times B14)	
1994	(C103 \times WF9) (Oh29 \times Oh41)	9C. 10
1995	\dots (Hy2 \times Oh7) (38-11 \times Oh41) \dots	9C, 10
	(C103 × B14) (Hy2 × Oh7)	
1997	(C103 \times Oh41) (Hy2 \times Oh7) (M14 \times 187-2) (WF9 \times B6)	9C, 10
1999	\dots (C103 × Oh43) (M14 × WF9) \dots	
3005	\dots (M14 \times WF9) (B14 \times W64A) \dots	2C
	(M14 $ imes$ W64A) (WF9 $ imes$ B14)	
3007	(R161 \times WF9) (R169 \times B14)	
3008	(R165 \times WF9) (R168 \times B14) (B14 \times B21) (A297 \times W64A)	
3010	(C103 \times N24) (WF9 \times B14)	
3011	(C103 $ imes$ Oh43) (WF9 $ imes$ B14)	6C
3012	(C103 \times B37) (Oh28 \times Oh43)	6C
3013	$(C103 \times Oh41) (Hy2 \times WF9) $ (Hy2 × WF9) (B14 × Oh41)	
3015A	\ldots (WF9 $ imes$ B14) (B37 $ imes$ N24) \ldots \ldots	
3016	(WF9 × B14) (B37 × Oh43)	2C, 6C
3017	\dots (WF9 \times B14) (B37 \times Oh45) \dots	
3018	(WF9 \times B14) (B38 \times N24)	60
3019 (lowa 4880)	$\dots (WF9 \times B14) (B38 \times Oh43) \dots (WF9 \times B14) (N6 \times Oh43) \dots \dots \dots (WF9 \times B14) (N6 \times Oh43) \dots \dots$	

Table 22. — Continued

Hybrid	Pedigree	Table No.
Illinois hybrids (contin	ued)(WF9 \times B14) (N6 \times Oh45)	60
3022	(WF9 \times B14) (N22A \times Oh43)	
3023A	(WF9 \times B14) (N24 \times Oh43) (WF9 \times B14) (N24 \times Oh422)	6C
3025	(WF9 \times B14) (N610 \times Oh43)	6C
	(WF9 \times B14) (N610 \times Oh45) (WF9 \times B14) (N611 \times Oh43)	
3029	\ldots (WF9 \times B14) (Oh43 \times Oh45) \ldots	6C
	$\dots (WF9 \times B14) (Oh43 \times Oh422) \dots (WF9 \times B38) (Oh28 \times Oh43) \dots$	
3033	(WF9 $ imes$ B40) (Oh28 $ imes$ Oh43)	6C
3034	(WF9 \times N6) (Oh28 \times Oh43) (WF9 \times N613) (Oh28 \times Oh43)	6C
3036	(B14 \times N6) (Oh28 \times Oh43)	6C
	$\dots (B14 \times B40) (Oh28 \times Oh43) \dots (B37 \times Oh26A) (Oh28 \times Oh43) \dots (Dh28 \times Oh43) \dots $	
	(B37 × B38) (Oh28 × Oh43)	
	(B35 \times B40) (Oh28 \times Oh43) (WF9 \times B35) (Oh28 \times Oh43)	
3042	$(WF9 \times B14)$ (B40 \times Oh45) (R71 \times R109B) (WF9 \times B14)	6C
	\dots (R109B × R113) (WF9 × B14)	
3045	\dots (R109B × R168) (WF9 × B14) \dots	
3047	(R113 × R168) (WF9 × B14) (R71 × R113) (WF9 × B14)	
	(R71 × R168) (WF9 × B14)	
3050	(Hy2 × WF9) (R71 × R109B) (Hy2 × WF9) (R109B × R113)	9C
3051	(Hy2 \times WF9) (R109B \times R168) (Hy2 \times WF9) (R113 \times R168)	9C
	(R109B × R113) (WF9 × 38-11)	
3055	$\label{eq:result} \begin{array}{l} \dots & (R109B \times R168) (WF9 \times 38\text{-}11) \dots \\ \dots & (R113 \times R168) (WF9 \times 38\text{-}11) \dots \\ \end{array}$	9C
3057	(R71 \times R109B) (R113 \times R168)	2C, 3D, 9C, 14B, 17C
	(R71 × R113) (R109B × R168) (R71 × R168) (R109B × R113)	
3060	(R129 \times R159) (R166 \times R168)	9C
	(R129 \times R159) (R168 \times R169) (R159 \times R161) (R168 \times R169)	
3063	(R159 × R163) (R165 × R168) (R159 × R163) (R166 × R168)	9C
	(R159 × R163) (R168 × R169)	
3066	(R159 \times R168) (R163 \times R165)	9C
3069	(R159 \times R169) (R161 \times R168) (R71 \times R101) (R105 \times R129)	9C
3070	\ldots (R71 \times R105) (R163 \times R168) \ldots	9C
3072	(R71 × R129) (R101 × R105) (R71 × R129) (R105 × R168) (R71 × R163) (R105 × R168)	9C
3073	($R71 \times R163$) ($R105 \times R168$) ($R71 \times R168$) ($R105 \times R163$)	9C
	$(Hy_2 \times WF_9)$ (R95 \times R101)	
	(Hy2 \times WF9) (R96 \times R101) (Hy2 \times WF9) (R96 \times B36)	
3078	\dots (Hy2 × WF9) (R96 × Oh451) \dots	9C
3079	(Hy2 \times WF9) (R101 \times 38-11)	9C

Table 22. — Continued

Hybrid	Pedigree	Table No.
Illinois hybrids (continue	d) (Hy2 $ imes$ WF9) (R101 $ imes$ Oh451)	90
3081. 3082. 3083. 3084.	(Hy2 × WF9) (R109B × R127) (Hy2 × WF9) (R109B × R127) (Hy2 × WF9) (R109B × B38) (Hy2 × WF9) (R127 × B38) (Hy2 × WF9) (R127 × L317)	9C 9C 9C 9C
3088 3089 3090	$\begin{array}{c}\ (Hy2 \times WF9)\ (R127 \times K720)\\\ (Hy2 \times WF9)\ (R127 \times K721)\\\ (Hy2 \times WF9)\ (R127 \times N25)\\\ (Hy2 \times WF9)\ (38-11 \times Oh451)\\\ (Hy2 \times WF9)\ (B36 \times Oh451)\\ \end{array}$	
3092 3093 3094 3095	(Hy2 × WF9) (B38 × L317) (Hy2 × WF9) (B38 × K720) (Hy2 × WF9) (B38 × N25) (Hy2 × WF9) (B38 × N35) (Hy2 × WF9) (L317 × K720)	9C
3097 3098 3100 3101	(R74 × R101) (R129 × WF9). (R95 × R101) (WF9 × 38-11). (R98 × R101) (WF9 × 38-11). (R101 × N12) (WF9 × 38-11). (R101 × N23) (WF9 × 38-11). (R101 × N23) (WF9 × 38-11).	9C
3103 3104 3105 3106	$\begin{array}{c}(R101 \times Oh41) (WF9 \times 38-11) \\(R109B \times R154) (WF9 \times 38-11) \\(R109B \times N25) (WF9 \times 38-11) \\(R129 \times R154) (WF9 \times 38-11) \\(R129 \times N25) (WF$	9C
3108 3109 3110 3111	$\begin{array}{c}(\texttt{R154} \times \texttt{B38}) (\texttt{WF9} \times \texttt{38-11}) \\(\texttt{R154} \times \texttt{K721}) (\texttt{WF9} \times \texttt{38-11}) \\(\texttt{R154} \times \texttt{K722}) (\texttt{WF9} \times \texttt{38-11}) \\(\texttt{R154} \times \texttt{K722}) (\texttt{WF9} \times \texttt{38-11}) \\(\texttt{R154} \times \texttt{N25}) (\texttt{WF9} \times \texttt{38-11}) \\(\texttt{R159} \times \texttt{R163}) (\texttt{R168} \times \texttt{WF9}) \\(\texttt{R159} \times \texttt{R163}) (\texttt{R169} \times \texttt{R169}) \\(\texttt{R159} \times \texttt{R163}) (\texttt{R169} \times \texttt{R169}) \\(\texttt{R159} \times \texttt{R163}) (\texttt{R169} \times \texttt{R169}) \\(\texttt{R159} \times \texttt{R169}) (\texttt{R169} \times \texttt{R169}) \ (\texttt{R169} \times \texttt{R169}) \\(\texttt{R159} \times \texttt{R169}) (\texttt{R169} \times \texttt{R169}) \ (\texttt{R169} \times R16$	9C 9C 9C 9C
3113 3114 3115 3116	$\begin{array}{c}(WF9 \times 38\text{-}11) (B38 \times \text{N25}) \\(WF9 \times 38\text{-}11) (K722 \times \text{N25}) \\(Hy2 \times WF9) (R101 \times \text{CI.38B}) \\(R127 \times \text{N35}) (WF9 \times 38\text{-}11) \\(R127 \times \text{K721}) (WF9 \times 38\text{-}11) \\(R128 \times \text{K721}) (WF9 \times \text{K721}) \\(R128 \times \text{K721}) (WF9 \times \text{K721}) \\(R128 \times \text{K721}) (WF9 \times \text{K721}) \\(R128 \times \text{K721}) \\(R128 \times \text{K721}) (WF9 \times \text{K721}) \\(R128 \times \text{K721}) \\(R128$	9C
3118 3119 3120	$\begin{array}{c} (R127 \times R154) (WF9 \times 38-11) \\ (Hy2 \times WF9) (38-11 \times B38) \\ (Hy2 \times WF9) (R154 \times B38) \\ (Hy2 \times WF9) (R127 \times 38-11) \\ (Hy2 \times WF9) (R127 \times R154) \\ (Hy2 \times WF9) (R127 \times R154) \end{array}$	9C
3125. 3126. 3127. 3128.	$\begin{array}{c}(Hy2 \times WF9)(R71 \times R168).................$	
3130	$\begin{array}{c}(\texttt{R101}\times\texttt{Mo8})(\texttt{38-11}\times\texttt{K201}).................$	
3136	(R71A × Mo3) (38-11 × K201) (R74 × R101) (38-11 × K201) (38-11 × K201) (Mo4 × Mo9)	170


Table 22. — Continued

Hybrid	Pedigree	Table No.
Illinois hybrids (conclude		
3138	(R129 \times Mo9) (38-11 \times K201) (R71A \times R101) (38-11 \times K201)	
3140	(38-11 × K201) (Ky126 × CI.21E)	
3141	(38-11 × K201) (K763 × Ky126)	
	(38-11 × K201) (Ky126 × Ok11) (38-11 × K201) (Ky126 × Oh7B)	
	(38-11 × K201) (K711 × Ok11)	
	(R129 $ imes$ M09150) (38-11 $ imes$ K201)	
	(R118 × Mo9150) (38-11 × K201) (R118 × R129) (38-11 × K201)	
3148	(R74 × Mo9150) (38-11 × K201)	
3149	(R74 \times R129) (38-11 \times K201)	17C
3150	\dots (R74 \times R118) (38-11 \times K201) \dots \dots	17C
	(WF9 \times 38-11) (B14 \times Oh41) (M14 \times WF9) (B14 \times Oh43)	
	$(M14 \times 187-2)$ (WF9 \times Oh43)	
3160	(WF9 $ imes$ Oh7) (B14 $ imes$ Oh43)	6C
3169C	(WF9 \times B37) (Oh28 \times Oh43)	6C
	(H21 × K64) (33-16 × Mo2RF) (R144 × R145) (R148 × R149)	
2247W	(R144 $ imes$ R145) (R146 $ imes$ R148)	2ABC, 6ABC
6016	(R78 $ imes$ K4) (R84 $ imes$ 38-11)	11A
	$\dots (R75 \times R76) (R84 \times K4) \dots \dots \dots \dots (R75 \times R76) (R84 \times K4) \dots \dots$	
6062	\dots (R78 \times 38-11) (R84 \times K4) \dots \dots \dots (R76 \times K4) (R78 \times R84) \dots \dots	IIA 11A
6075	\ldots (R75 $ imes$ R83) (R78 $ imes$ R87) \ldots \ldots	
6076	(R76 \times R78) (R87 \times R117) (R78 \times R117) (R84 \times R87)	
	(R/ 6 × R11/) (R64 × R67)	· · · · · · · · · · · · · · · · · · ·
Miscellaneous hybrids		0.100
AES 510	(WF9 \times W22) (H19 \times B9) (M14 \times A73) (Oh43 \times Oh51A)	
AES 702 (III. 1790)	\ldots (C103 \times M14) (Hy2 \times WF9) \ldots 2ABC	6 ABC, 7B, 9BC, 14B
AES 805 (III. 1770)	(C103 \times Oh45) (WF9 \times 38-11)6	ABC, 9ABC, 13B, 14B, 17ABC, 18B
AES 806	(Hy $ imes$ WF9) (N6 $ imes$ N15)	
	\dots (WF9 \times 38-11) (H14 \times Oh43) \dots	
	(H28 × K55) (H30 × K41)	
AES 904 W	(K64 × Mo22) (T111 × T115) (Hy2 × Oh7) (88-4A × SS101)	17ABC
	(Hy2 × Oh7) (128-4A × SS101)	
GCP 6220	(WF9 $ imes$ 38-11) (O-1265 $ imes$ GT107)	9C, 17C
Ind. 4655	$(C103 \times Oh43)$ (P8 \times WF9)	9BC
	(P8 \times WF9) (H14 \times Oh43) (M14 \times B14) (WF9 \times W22)	
Ind. 5655	(WF9 $ imes$ 38-11R) (Oh7B $ imes$ Oh45)	9BC
Ind. 6225 (III. 1959)	\dots (M14 \times W64A) (B14 \times A297) \dots	
Ind. 6615	(H49 \times H55) (H53 \times B14) (C103 \times H53) (WF9 \times H52)	
Ind. 6833	(WF9 \times H52) (H54 \times H60)	9C
Ind. 6874	(H49 $ imes$ H52) (H59 $ imes$ H60)	17C
lowa 4297	$(M14 \times 187-2)$ (WF9 \times 1.205)	6ABC
	(M14 \times WF9) (B16 \times Oh51A) (M14 \times WF9) (Oh43 \times Oh51A)	
lowa 4809	\dots (M14 \times WF9) (B14 \times B37) \dots	6BC
lowa 4879 (III. 3016A)	\dots (WF9 \times Oh43) (B14 \times B37) \dots	6BC

Tab	le 22.	- Conc	luded
-----	--------	--------	-------

Hybrid	Pedigree	Table No.			
Miscellaneous hybrids (co	Miscellaneous hybrids (concluded)				
	(WF9 \times Oh43) (B14 \times B38)				
	(WF9 × B7) (B14 × B39)				
	(WF9 \times B7) (B10 \times B14) (Hy \times Oh41) (WF9 \times B14)				
	$(C103 \times Oh45) (W14 \times WF9)$				
	$(Hy \times R59) (N6 \times Oh28)$				
Kan. 2472W	$(H30 \times K41) (K55 \times K697) \dots$				
	.(M14 \times WF9) (MS212 \times Oh51A)				
	.(WF9 \times MS209)(MS106 \times MS107)				
	.(WF9 \times MS107) (MS208 \times Oh43)				
	(WF9 $ imes$ MS120) (MS211 $ imes$ Oh43)				
	(B14 × A297) (A295 × W64A)				
	(B14 × A239) (A295 × W64A)				
	$(38-11 \times CI.21E)$ (K4 \times CI.7)				
Mo. 916		1780			
	$(B41 \times Oh7A)$ (Mo3 \times Cl.21E)				
	. (H30 $ imes$ K41) (Mo9187W $ imes$ N72)				
	$(Hy \times WF9) (B14 \times N6)$				
	$(A \times W23)$ (Oh26 \times Oh51)				
	$(WF9 \times Oh51A)$ (Oh33 \times Oh40B) (WF9 \times B14) (Oh28 \times Oh43)				
	$(4413-2 \times 4417-1)$ (K55 \times K64)				
	(4413-2 × 4417-1) (K6 × K55)				
	(4401-19 × 4408-6) (4409-6 × Oh29)				
TRF 13W					
U.S. 13	(Hy × L317) (WF9 × 38-11) 9ABC, 11	B, 12D, 17ABC			
	. (K55 × K64) (Ky27 × Ky49)				
U.S. 619W	$(K55 \times Cl.64) (Ky27 \times Ky49) \dots$	17C			

5M-1-58-64606

•

.

.

.

